Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water

Author(s):  
Tailu Li ◽  
Haosen Qin ◽  
Jianqiang Wang ◽  
Xiang Gao ◽  
Nan Meng ◽  
...  
Solar Energy ◽  
2019 ◽  
Vol 183 ◽  
pp. 453-462 ◽  
Author(s):  
K. Martin-Escudero ◽  
E. Salazar-Herran ◽  
A. Campos-Celador ◽  
G. Diarce-Belloso ◽  
I. Gomez-Arriaran

2012 ◽  
Vol 30 ◽  
pp. 101-105 ◽  
Author(s):  
Andreas Genkinger ◽  
Ralf Dott ◽  
Thomas Afjei

2019 ◽  
Vol 111 ◽  
pp. 06009
Author(s):  
Tymofii Tereshchenko, ◽  
Dmytro Ivanko ◽  
Natasa Nord ◽  
Igor Sartori

Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.


2014 ◽  
Vol 899 ◽  
pp. 199-204
Author(s):  
Lukáš Skalík ◽  
Otília Lulkovičová

The energy demand of buildings represents in the balance of heat use and heat consumption of energy complex in the Slovak national economy second largest savings potential. Their complex energy demands is the sum of total investment input to ensure thermal protection and annual operational demands of particular energy systems during their lifetime in building. The application of energy systems based on thermal solar systems reduces energy consumption and operating costs of building for support heating and domestic hot water as well as savings of non-renewable fossil fuels. Correctly designed solar energy system depends on many characteristics, i. e. appropriate solar collector area and tank volume, collector tilt and orientation as well as quality of used components. The evaluation of thermal solar system components by calculation software shows how can be the original thermal solar system improved by means of performance. The system performance can be improved of more than 31 % than in given system by changing four thermal solar system parameters such as heat loss coefficient and aperture area of used solar collector, storage tank volume and its height and diameter ratio.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012077
Author(s):  
Xiaoming Zhang ◽  
Qiang Wang ◽  
Qiujin Sun ◽  
Mingyu Shao

Abstract There have been few practical applications of solar coupled groundwater source heat pump (GWHP) systems in large public buildings, and data on this technology are scarce. A solar coupled GWHP system was investigated in this study. The system uses an underground water source heat pump system for heating in winter, cooling in summer, and providing part of the domestic hot water, and it also uses a solar energy system to prepare domestic hot water. These two types of energy are complementary. The system was tested throughout the cooling season. This experiment ran from May 10, 2021, to September 10, 2021. The results show that the system can guarantee the indoor design temperature and the supply of domestic hot water. The solar water heating system operated for 1233 min in the summer; hot water (2334 m3) was prepared. During the summer, the average energy efficiency ratio of the GWHP unit was approximately 4.88. The energy efficiency ratio of the entire system was approximately 3.34. Such projects can play a key role in demonstrating this type of system.


Author(s):  
Wenzhi Cui ◽  
Quan Liao ◽  
Longjian Li ◽  
Songqiang Yu

A dynamic model is developed to analysis the transient characteristics of hybrid photovoltaic/thermal solar energy system. Two typical climatic conditions, clear day and hazy day, are considered in the present study. The daily and annual variation of hot water temperature, electrical output, thermal efficiency and electrical efficiency are calculated and analyzed. The results show that the solar irradiance is the critical factor that affects the variation of the water temperature, electrical output and electrical efficiency of the PV/T system. The thermal efficiency of the system has also a certain relation to the daily fluctuation of solar radiation.


Author(s):  
Shuang Lu ◽  
Jingyi Wu

In Chinese market, many homes use heat pump systems for heating and cooling. Domestic hot water is usually provided by a domestic water heater making use of electricity, natural gas or solar energy, which is known for its great energy costs. These systems consume much energy and increase the total cost of the required domestic energy. A new system combining heat pump with water heater is proposed in this paper, and it is named domestic energy system. The system can realize the provision of space heating, cooling and domestic hot water throughout the year. Based on the different types of heat pumps and water heaters, domestic energy consumption patterns are divided into five categories: heat pump and gas-fired water heater system, heat pump and solar water heater system, heat pump and electricity water heater system, heat pump and heat pump water heater system, and domestic energy system. This study describes and compares all of the above-mentioned systems including energy and exergy analysis. Results showed that the domestic energy system can save energy and provide good economy.


Author(s):  
Sean Lawless ◽  
Ravi Gorthala

A numerical model was developed in the TRNSYS environment (a transient simulation software) for Tri-Sol, a novel three-in-one solar energy system that produces electricity, hot water, and daylight for commercial buildings, to simulate its annual performance in terms of the three useful energy streams. Even though this model was developed for Tri-Sol, it can also be used for calculating the annual performance of similar concentrating PV/thermal (PV/T) and daylighting systems for various geographical locations. The model simultaneously calculates the codependent electrical and thermal performances, and calculates the useful daylight harvested by the building. The model is versatile and flexible in that any configuration of the modeled system can be properly designed using by changing parameters and inputs inside of TRNSYS. This model was used to predict the annual performance a single Tri-Sol PV/T module and a single Tri-Sol unit with five such modules as a function of its tilt and geographical location. Then, this model was used to compute the monthly performance of a Tri-Sol array for a 10,000 ft.2 building for varying geographical locations at a fixed tilt angle. These results show the utility and the power of the model for designing combined PV/T-daylighting solar technologies such as Tri-Sol.


1977 ◽  
Vol 1 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Francis Hand ◽  
Barfour Asare ◽  
John Haslett

Sign in / Sign up

Export Citation Format

Share Document