Assessing One-minute Diffuse Fraction Models Based on Worldwide Climate Features

Author(s):  
Allan R. Starke ◽  
Leonardo F.L. Lemos ◽  
Cristian M. Barni ◽  
Rubinei D. Machado ◽  
José M. Cardemil ◽  
...  
2016 ◽  
Vol 861 ◽  
pp. 509-515
Author(s):  
Ehsan Vazifeh ◽  
Matthias Schuss ◽  
Ardeshir Mahdavi

Many building performance applications (energy use, solar gains, thermal comfort, renewable energy systems, daylight, etc.) require information about both direct and diffuse components of the incident solar radiation. However, most meteorological stations only monitor global horizontal irradiance. Consequently, multiple methods have been proposed in the past to derive from measured global horizontal irradiance data the diffuse fraction. Thereby, additional data regarding other parameters such as clearness index, solar altitude, air mass, and turbidity are used. Given the importance of this procedure for the down the line tools, its reliability represents a critical issue. To address this point, we pursued an empirical approach. A number of existing methods for the computation of the diffuse fraction were selected. Actual measurements of global and diffuse irradiance were obtained for seven locations in USA and one location in Austria. The measured global irradiance data for these locations were fed to the aforementioned diffuse fraction models. The calculation results were then compared with the corresponding empirical data. The comparative assessment yielded a number of findings. The relative performance ("ranking") of the models was found to be more or less consistent across the different locations. However, none of the models can be said to be performing wholly satisfactory. For instance, the best performing model displayed only in 45 to 65 percentage of the cases relative errors less than 20%. In case of the worst performing model, the percentage of the cases for which relative errors were less than 20% was even smaller, namely 30% to 60%.


Author(s):  
Ahmet Selim Dalkilic ◽  
Suriyan Laohalertdecha ◽  
Somchai Wongwises

Void fractions are determined in vertical downward annular two-phase flow of R134a inside 8.1 mm i.d. smooth tube. The experiments are done at average saturated condensing temperatures of 40 and 50°C. The average qualities are between 0.84–0.94. The mass fluxes are around 515 kg m−2s−1. The experimental setup is explained elaborately. Comparisons between the void fraction determined from 35 void fraction correlations are done. According to the use of various horizontal and vertical annular flow void fraction models together with the present experimental condensation heat transfer data, similar void fraction results were obtained mostly for the smooth tube. The experimental friction factors obtained from void fraction correlations are compared with the friction factors determined from graphical information provided by Bergelin et. al. Effect of void fraction alteration on the momentum pressure drop is also presented.


2021 ◽  
pp. 1-61
Author(s):  
Jesse Norris ◽  
Alex Hall ◽  
J. David Neelin ◽  
Chad W. Thackeray ◽  
Di Chen

AbstractDaily and sub-daily precipitation extremes in historical Coupled-Model-Intercomparison-Project-Phase-6 (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01–10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes the multi-model median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3-D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes (r=–0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction (r=–0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These inter-model differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible 21st-Century projections.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1192
Author(s):  
Randall Claywell ◽  
Laszlo Nadai ◽  
Imre Felde ◽  
Sina Ardabili ◽  
Amirhosein Mosavi

The accurate prediction of the solar diffuse fraction (DF), sometimes called the diffuse ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse irradiance research is discussed and then three robust, machine learning (ML) models are examined using a large dataset (almost eight years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid adaptive network-based fuzzy inference system (ANFIS), a single multi-layer perceptron (MLP) and a hybrid multi-layer perceptron grey wolf optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various solar and DF irradiance data, from Spain. The results were then evaluated using frequently used evaluation criteria, the mean absolute error (MAE), mean error (ME) and the root mean square error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance in both the training and the testing procedures.


2017 ◽  
Vol 17 (20) ◽  
pp. 12697-12708 ◽  
Author(s):  
Guadalupe Sanchez ◽  
Antonio Serrano ◽  
María Luisa Cancillo

Abstract. Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.


Sign in / Sign up

Export Citation Format

Share Document