Cardiorespiratory responses and reduced apneic time to cold-water face immersion after high intensity exercise

2016 ◽  
Vol 220 ◽  
pp. 33-39 ◽  
Author(s):  
Sylvia Konstantinidou ◽  
Helen Soultanakis
2013 ◽  
Vol 114 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Jamie Stanley ◽  
Jonathan M. Peake ◽  
Jeff S. Coombes ◽  
Martin Buchheit

2016 ◽  
Vol 41 (11) ◽  
pp. 1163-1170 ◽  
Author(s):  
Avina McCarthy ◽  
James Mulligan ◽  
Mikel Egaña

A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (Ppeak) and 30 s at 90% Ppeak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P < 0.05) longer during Ex2 following the 5- and 10-min cold-water immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P < 0.05) lower during most periods of Ex2 after both cold-water immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.


Heart & Lung ◽  
2021 ◽  
Vol 50 (5) ◽  
pp. 609-614
Author(s):  
Giovana Salgado Baffa ◽  
Cássia da Luz Goulart ◽  
Flávia Rossi Caruso ◽  
Adriana S. Garcia de Araújo ◽  
Polliana Batista dos Santos ◽  
...  

Author(s):  
Josef Niebauer ◽  
Martin Burtscher

Sudden cardiac death (SCD) still represents an unanticipated and catastrophic event eliciting from cardiac causes. SCD is the leading cause of non-traumatic deaths during downhill skiing and mountain hiking, related to the fact that these sports are very popular among elderly people. Annually, more than 40 million downhill skiers and mountain hikers/climbers visit mountainous regions of the Alps, including an increasing number of individuals with pre-existing chronic diseases. Data sets from two previously published case-control studies have been used to draw comparisons between the SCD risk of skiers and hikers. Data of interest included demographic variables, cardiovascular risk factors, medical history, physical activity, and additional symptoms and circumstances of sudden death for cases. To establish a potential connection between the SCD risk and sport-specific physical strain, data on cardiorespiratory responses to downhill skiing and mountain hiking, assessed in middle-aged men and women, have been included. It was demonstrated that previous myocardial infarction (MI) (odds ratio; 95% CI: 92.8; 22.8–379.1; p < 0.001) and systemic hypertension (9.0; 4.0–20.6; p < 0.001) were predominant risk factors for SCD in skiers, but previous MI (10.9; 3.8–30.9; p < 0.001) and metabolic disorders like hypercholesterolemia (3.4; 2.2–5.2; p < 0.001) and diabetes (7.4; 1.6–34.3; p < 0.001) in hikers. More weekly high-intensity exercise was protective in skiers (0.17; 0.04–0.74; p = 0.02), while larger amounts of mountain sports activities per year were protective in hikers (0.23; 0.1–0.4; <0.001). In conclusion, previous MI history represents the most important risk factor for SCD in recreational skiers and hikers as well, and adaptation to high-intensity exercise is especially important to prevent SCD in skiers. Moreover, the presented differences in risk factor patterns for SCDs and discussed requirements for physical fitness in skiers and hikers will help physicians to provide specifically targeted advice.


Sign in / Sign up

Export Citation Format

Share Document