scholarly journals Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability

2021 ◽  
Vol 208 ◽  
pp. 107404
Author(s):  
Sofia Koukoura ◽  
Matti Niclas Scheu ◽  
Athanasios Kolios
2015 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
Bavo De Maré ◽  
Jacob Sukumaran ◽  
Mia Loccufier ◽  
Patrick De Baets

While the number of offshore wind turbines is growing and turbines getting bigger and more expensive, the need for good condition monitoring systems is rising. From the research it is clear that failures of the gearbox, and in particular the gearwheels and bearings of the gearbox, have been responsible for the most downtime of a wind turbine. Gearwheels and bearings are being simulated in a multi-sensor environment to observe the wear on the surface.


Author(s):  
Richard Williams ◽  
Christopher Crabtree ◽  
Simon Hogg

This paper presents a cost benefit analysis for wind turbine condition monitoring systems. It is widely acknowledged that performing proactive maintenance actions can reduce the number and severity of wind turbine failures. However, the use of condition monitoring systems to determine the health of the system is often viewed as costly and of little financial benefit. In this analysis the increased costs associated with condition monitoring were offset by the positive effect of early fault detection, with faults being detected before they reach a critical stage. The continual growth in turbine output and the emergence of far-offshore wind farm sites make the economic case for cost of energy reduction from timely and accurate fault detection ever stronger. An assessment of the capability of the monitoring system was undertaken through allowance for the true to false condition monitoring detection ratio and the ability of the system to detect the severity of a fault. The analysis also compared onshore and offshore assets where the access availability can severely influence the downtime. The results show a clear financial justification for wind turbine condition monitoring and indicate the successful detection ratio required before a condition monitoring system can offer a financial benefit.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Edwin Wiggelinkhuizen ◽  
Theo Verbruggen ◽  
Henk Braam ◽  
Luc Rademakers ◽  
Jianping Xiang ◽  
...  

This paper discusses the results of an extensive investigation to assess the added value of various techniques of health monitoring to optimize the maintenance procedures of offshore wind farms. This investigation was done within the framework of the EU funded Condition Monitoring for Offshore Wind Farms (CONMOW) project, which was carried out from 2002 to 2007. A small wind farm of five turbines has been instrumented with several condition monitoring systems and also with the “traditional” measurement systems for measuring mechanical loads and power performance. Data from vibration and traditional measurements, together with data collected by the turbine’s system control and data acquisition (SCADA) systems, have been analyzed to assess (1) if failures can be determined from the different data sets; (2) if so, if they can be detected at an early stage and if their progress over time can be monitored; and (3) if criteria are available to assess the component’s health. Several data analysis methods and measurement configurations have been developed, applied, and tested. This paper first describes the use of condition monitoring if condition based maintenance is going to be applied instead of only scheduled and corrective maintenance. Second, the paper describes the CONMOW project and its major results, viz., the assessment of the usefulness and capabilities of condition monitoring systems, including algorithms for identifying early failures. Finally, the economic consequences of applying condition monitoring systems have been quantified and assessed.


2020 ◽  
Vol 10 (23) ◽  
pp. 8685
Author(s):  
Ravi Pandit ◽  
Athanasios Kolios

Power curves, supplied by turbine manufacturers, are extensively used in condition monitoring, energy estimation, and improving operational efficiency. However, there is substantial uncertainty linked to power curve measurements as they usually take place only at hub height. Data-driven model accuracy is significantly affected by uncertainty. Therefore, an accurate estimation of uncertainty gives the confidence to wind farm operators for improving performance/condition monitoring and energy forecasting activities that are based on data-driven methods. The support vector machine (SVM) is a data-driven, machine learning approach, widely used in solving problems related to classification and regression. The uncertainty associated with models is quantified using confidence intervals (CIs), which are themselves estimated. This study proposes two approaches, namely, pointwise CIs and simultaneous CIs, to measure the uncertainty associated with an SVM-based power curve model. A radial basis function is taken as the kernel function to improve the accuracy of the SVM models. The proposed techniques are then verified by extensive 10 min average supervisory control and data acquisition (SCADA) data, obtained from pitch-controlled wind turbines. The results suggest that both proposed techniques are effective in measuring SVM power curve uncertainty, out of which, pointwise CIs are found to be the most accurate because they produce relatively smaller CIs. Thus, pointwise CIs have better ability to reject faulty data if fault detection algorithms were constructed based on SVM power curve and pointwise CIs. The full paper will explain the merits and demerits of the proposed research in detail and lay out a foundation regarding how this can be used for offshore wind turbine conditions and/or performance monitoring activities.


Sign in / Sign up

Export Citation Format

Share Document