scholarly journals Remote data acquisition for condition monitoring of wind turbines

2015 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
Bavo De Maré ◽  
Jacob Sukumaran ◽  
Mia Loccufier ◽  
Patrick De Baets

While the number of offshore wind turbines is growing and turbines getting bigger and more expensive, the need for good condition monitoring systems is rising. From the research it is clear that failures of the gearbox, and in particular the gearwheels and bearings of the gearbox, have been responsible for the most downtime of a wind turbine. Gearwheels and bearings are being simulated in a multi-sensor environment to observe the wear on the surface.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 464
Author(s):  
Jinje Park ◽  
Changhyun Kim ◽  
Minh-Chau Dinh ◽  
Minwon Park

Renewable energy is being adopted worldwide, and the proportion of offshore wind turbines is increasing. Offshore wind turbines operate in harsh weather conditions, resulting in various failures and high maintenance costs. In this paper, a condition diagnosis model for condition monitoring of an offshore wind turbine has been developed. The generator, main bearing, pitch system, and yaw system were selected as components subject to the condition monitoring by considering the failure rate and downtime of the wind turbine. The condition diagnosis model works by comparing real-time and predictive operating data of the wind turbine, and about four years of Supervisory Control and Data Acquisition (SCADA) data from a 2 MW wind turbine was used to develop the model. A deep neural network and an artificial neural network were used as machine learning to predict the operational data in the condition diagnosis model, and a confusion matrix was used to measure the accuracy of the failure determination. As a result of the condition monitoring derived by inputting SCADA data to the designed system, it was possible to maintain the failure determination accuracy of more than 90%. The proposed condition monitoring system will be effectively utilized for the maintenance of wind turbines.


Author(s):  
Richard Williams ◽  
Christopher Crabtree ◽  
Simon Hogg

This paper presents a cost benefit analysis for wind turbine condition monitoring systems. It is widely acknowledged that performing proactive maintenance actions can reduce the number and severity of wind turbine failures. However, the use of condition monitoring systems to determine the health of the system is often viewed as costly and of little financial benefit. In this analysis the increased costs associated with condition monitoring were offset by the positive effect of early fault detection, with faults being detected before they reach a critical stage. The continual growth in turbine output and the emergence of far-offshore wind farm sites make the economic case for cost of energy reduction from timely and accurate fault detection ever stronger. An assessment of the capability of the monitoring system was undertaken through allowance for the true to false condition monitoring detection ratio and the ability of the system to detect the severity of a fault. The analysis also compared onshore and offshore assets where the access availability can severely influence the downtime. The results show a clear financial justification for wind turbine condition monitoring and indicate the successful detection ratio required before a condition monitoring system can offer a financial benefit.


Author(s):  
I. Antoniadou ◽  
N. Dervilis ◽  
E. Papatheou ◽  
A. E. Maguire ◽  
K. Worden

Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.


Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.


2021 ◽  
Vol 11 (2) ◽  
pp. 574
Author(s):  
Rundong Yan ◽  
Sarah Dunnett

In order to improve the operation and maintenance (O&M) of offshore wind turbines, a new Petri net (PN)-based offshore wind turbine maintenance model is developed in this paper to simulate the O&M activities in an offshore wind farm. With the aid of the PN model developed, three new potential wind turbine maintenance strategies are studied. They are (1) carrying out periodic maintenance of the wind turbine components at different frequencies according to their specific reliability features; (2) conducting a full inspection of the entire wind turbine system following a major repair; and (3) equipping the wind turbine with a condition monitoring system (CMS) that has powerful fault detection capability. From the research results, it is found that periodic maintenance is essential, but in order to ensure that the turbine is operated economically, this maintenance needs to be carried out at an optimal frequency. Conducting a full inspection of the entire wind turbine system following a major repair enables efficient utilisation of the maintenance resources. If periodic maintenance is performed infrequently, this measure leads to less unexpected shutdowns, lower downtime, and lower maintenance costs. It has been shown that to install the wind turbine with a CMS is helpful to relieve the burden of periodic maintenance. Moreover, the higher the quality of the CMS, the more the downtime and maintenance costs can be reduced. However, the cost of the CMS needs to be considered, as a high cost may make the operation of the offshore wind turbine uneconomical.


2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Sign in / Sign up

Export Citation Format

Share Document