Risk-Averse Maintenance Scheduling of Generation Units in Combined Heat and Power Systems with Demand Response

Author(s):  
Omid Sadeghian ◽  
Amin Mohammadpour Shotorbani ◽  
Behnam Mohammadi-Ivatloo ◽  
Rehan Sadiq ◽  
Kasun Hewage
2019 ◽  
Vol 149 ◽  
pp. 1359-1369 ◽  
Author(s):  
Majid Majidi ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 1119-1127 ◽  
Author(s):  
Manijeh Alipour ◽  
Kazem Zare ◽  
Heresh Seyedi ◽  
Mehdi Jalali

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2840 ◽  
Author(s):  
Omid Sadeghian ◽  
Arash Moradzadeh ◽  
Behnam Mohammadi-Ivatloo ◽  
Mehdi Abapour ◽  
Fausto Pedro Garcia Marquez

Yearly generation maintenance scheduling (GMS) of generation units is important in each system such as combined heat and power (CHP)-based systems to decrease sudden failures and premature degradation of units. Imposing repair costs and reliability deterioration of system are the consequences of ignoring the GMS program. In this regard, this research accomplishes GMS inside CHP-based systems in order to determine the optimal intervals for predetermined maintenance required duration of CHPs and other units. In this paper, cost minimization is targeted, and violation of units’ technical constraints like feasible operation region of CHPs and power/heat demand balances are avoided by considering related constraints. Demand-response-based short-term generation scheduling is accomplished in this paper considering the maintenance intervals obtained in the long-term plan. Numerical simulation is performed and discussed in detail to evaluate the application of the suggested mixed-integer quadratic programming model that implemented in the General Algebraic Modeling System software package for optimization. Numerical simulation is performed to justify the model effectiveness. The results reveal that long-term maintenance scheduling considerably impacts short-term generation scheduling and total operation cost. Additionally, it is found that the demand response is effective from the cost perspective and changes the generation schedule.


2021 ◽  
Vol 11 (14) ◽  
pp. 6620
Author(s):  
Arman Alahyari ◽  
David Pozo ◽  
Meisam Farrokhifar

With the recent advent of technology within the smart grid, many conventional concepts of power systems have undergone drastic changes. Owing to technological developments, even small customers can monitor their energy consumption and schedule household applications with the utilization of smart meters and mobile devices. In this paper, we address the power set-point tracking problem for an aggregator that participates in a real-time ancillary program. Fast communication of data and control signal is possible, and the end-user side can exploit the provided signals through demand response programs benefiting both customers and the power grid. However, the existing optimization approaches rely on heavy computation and future parameter predictions, making them ineffective regarding real-time decision-making. As an alternative to the fixed control rules and offline optimization models, we propose the use of an online optimization decision-making framework for the power set-point tracking problem. For the introduced decision-making framework, two types of online algorithms are investigated with and without projections. The former is based on the standard online gradient descent (OGD) algorithm, while the latter is based on the Online Frank–Wolfe (OFW) algorithm. The results demonstrated that both algorithms could achieve sub-linear regret where the OGD approach reached approximately 2.4-times lower average losses. However, the OFW-based demand response algorithm performed up to twenty-nine percent faster when the number of loads increased for each round of optimization.


Author(s):  
Manuel-Angel Gonzalez-Chapa ◽  
Jose-Ramon Vega-Galaz

Combined Heat and Power systems have been used all around the world due to their effective and viable way of transforming energy from fossil fuel. Indeed, the advantage of lower greenhouse gas emissions compared to those obtained in conventional power or conventional heat generation systems have been an important factor giving CHP systems an advantage over these conventional ones. Certainly CHP has been, and continues to be, a good practice while renewable technologies become more economically. While these technologies emerge it is important to continue minimizing these greenhouse gas emissions from conventional and CHP units as much as possible. This paper deals with the fuel optimization of power, heat and CHP systems including emissions and ambient conditions constraints. Ambient conditions variations are evaluated before solving the optimization and then introduced to the problem to consider their effects.


2022 ◽  
Vol 51 ◽  
pp. 101944
Author(s):  
Oon Erixno ◽  
Nasrudin Abd Rahim ◽  
Farah Ramadhani ◽  
Noriah Nor Adzman

Sign in / Sign up

Export Citation Format

Share Document