scholarly journals Biodistribution studies for cell therapy products: Current status and issues

2021 ◽  
Vol 18 ◽  
pp. 202-216
Author(s):  
Yoshiteru Kamiyama ◽  
Yoichi Naritomi ◽  
Yuu Moriya ◽  
Syunsuke Yamamoto ◽  
Tsukasa Kitahashi ◽  
...  
Author(s):  
Kenji Osafune

AbstractWith few curative treatments for kidney diseases, increasing attention has been paid to regenerative medicine as a new therapeutic option. Recent progress in kidney regeneration using human-induced pluripotent stem cells (hiPSCs) is noteworthy. Based on the knowledge of kidney development, the directed differentiation of hiPSCs into two embryonic kidney progenitors, nephron progenitor cells (NPCs) and ureteric bud (UB), has been established, enabling the generation of nephron and collecting duct organoids. Furthermore, human kidney tissues can be generated from these hiPSC-derived progenitors, in which NPC-derived glomeruli and renal tubules and UB-derived collecting ducts are interconnected. The induced kidney tissues are further vascularized when transplanted into immunodeficient mice. In addition to the kidney reconstruction for use in transplantation, it has been demonstrated that cell therapy using hiPSC-derived NPCs ameliorates acute kidney injury (AKI) in mice. Disease modeling and drug discovery research using disease-specific hiPSCs has also been vigorously conducted for intractable kidney disorders, such as autosomal dominant polycystic kidney disease (ADPKD). In an attempt to address the complications associated with kidney diseases, hiPSC-derived erythropoietin (EPO)-producing cells were successfully generated to discover drugs and develop cell therapy for renal anemia. This review summarizes the current status and future perspectives of developmental biology of kidney and iPSC technology-based regenerative medicine for kidney diseases.


2015 ◽  
Vol 56 (6) ◽  
pp. 409 ◽  
Author(s):  
Jae Heon Kim ◽  
Yun Seob Song

2016 ◽  
Vol 40 ◽  
pp. 955-967 ◽  
Author(s):  
Elena RUSU ◽  
Laura Georgiana NECULA ◽  
Ana Iulia NEAGU ◽  
Mihail ALECU ◽  
Cristian STAN ◽  
...  

Author(s):  
C. Rosanne M. Ausems ◽  
Baziel G.M. van Engelen ◽  
Hans van Bokhoven ◽  
Derick G. Wansink

AbstractThe intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients. Graphical abstract


2008 ◽  
Vol 24 (3-4) ◽  
pp. E18 ◽  
Author(s):  
Matthew T. Harting ◽  
James E. Baumgartner ◽  
Laura L. Worth ◽  
Linda Ewing-Cobbs ◽  
Adrian P. Gee ◽  
...  

Preliminary discoveries of the efficacy of cell therapy are currently being translated to clinical trials. Whereas a significant amount of work has been focused on cell therapy applications for a wide array of diseases, including cardiac disease, bone disease, hepatic disease, and cancer, there continues to be extraordinary anticipation that stem cells will advance the current therapeutic regimen for acute neurological disease. Traumatic brain injury is a devastating event for which current therapies are limited. In this report the authors discuss the current status of using adult stem cells to treat traumatic brain injury, including the basic cell types and potential mechanisms of action, preclinical data, and the initiation of clinical trials.


Sign in / Sign up

Export Citation Format

Share Document