scholarly journals On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves

2020 ◽  
Vol 18 ◽  
pp. 103317 ◽  
Author(s):  
Mostafa M.A. Khater ◽  
Raghda A.M. Attia ◽  
Choonkil Park ◽  
Dianchen Lu
2021 ◽  
pp. 2150480
Author(s):  
Mostafa M. A. Khater

The trigonometric quintic B-spline scheme is used in this research paper to research Zakharov’s (ZK) nonlinear dimensional equation’s numerical solution. The ZK model’s solutions explain the relationship between the high-frequency Langmuir and the low-frequency ion-acoustic waves with many applications in optical fiber, coastal engineering, and fluid mechanics of electromagnetic waves, plasma physics, and signal processing. Three recent computational schemes (the expanded [Formula: see text]-expansion method, generalized Kudryashov method, and modified Khater method) have recently been used to investigate this model’s moving wave solution. Many innovative solutions have been established in this paper to determine the original and boundary conditions that allow numerous numerical schemes to be implemented. Here, the trigonometric quintic B-spline method is used to analyze the precision of the collected analytical solutions. To illustrate the precision of the numerical and computational solutions, distinct drawings are depicted.


1993 ◽  
Vol 50 (1) ◽  
pp. 37-44 ◽  
Author(s):  
U. A. Mofiz ◽  
Madhabi Islam ◽  
Zarin Ahmed

Nonlinear propagation of ion-acoustic waves and low-frequency electrostatic modes in a dusty plasma is investigated. The evolution equations of these modes are developed and solved analytically. It is found that for small grain charge usual ion-acoustic solitons may exist in a dusty plasma, but increasing grain charge destroys them and finally they may disappear. The low-frequency electrostatic mode may be localized, forming solitons, which may act as centres of wave scattering in a dusty plasma.


Solar Physics ◽  
2020 ◽  
Vol 295 (12) ◽  
Author(s):  
Alexandr Kryshtal ◽  
Anna Voitsekhovska ◽  
Oleg Cheremnykh ◽  
Istvan Ballai ◽  
Gary Verth ◽  
...  

AbstractIn this study we discuss the excitation of low-frequency plasma waves in the lower-middle chromosphere region of loop footpoints for the case when the plasma can be considered to be in a pre-flare state. It is shown that among the well-known semi-empirical models of the solar atmosphere, only the VAL (F) model together with a particular set of basic plasma parameters and amplitudes of the electric and magnetic fields supports generation of low-frequency wave instability. Our results show that it is possible to predict the onset of the flare process in the active region by using the interaction of kinetic Alfvén and kinetic ion-acoustic waves, which are solutions of the derived dispersion equation. The VAL (F) model allows situations when the main source of the aforementioned instability can be a sub-Dreicer electric field and drift plasma movements due to presence of spatial inhomogeneities. We also show that the generation of kinetic Alfvén and kinetic ion-acoustic waves can occur both, in plasma with a purely Coulomb conductivity and in the presence of small-scale Bernstein turbulence. The excitation of the small amplitude kinetic waves due to the development of low threshold instability in plasma with relatively low values of the magnetic field strength is also discussed.


1994 ◽  
Vol 1 (11) ◽  
pp. 3542-3556 ◽  
Author(s):  
H. X. Vu ◽  
J. M. Wallace ◽  
B. Bezzerides

2021 ◽  
Author(s):  
David Pisa ◽  
Jan Soucek ◽  
Ondrej Santolik ◽  
Milan Maksimovic ◽  
Timothy Horbury ◽  
...  

<p>Electric field observations of the Time Domain Sampler (TDS) receiver, a part of the Radio and Plasma Waves (RPW) instrument onboard Solar Orbiter, often exhibit very intense broadband emissions at frequencies below 10 kHz in the spacecraft frame. The RPW instrument has been operating almost continuously during the commissioning phase of the mission from March to May, the first perihelion in June, and through the first flyby of Venus in late December 2020. Nearly a year of observations allow us to perform a statistical study of ion-acoustic waves in the solar wind covering an interval of heliocentric distances between 0.5 AU to 1 AU. The occurrence of low-frequency waves peaks around perihelion in June at distances of 0.5 AU and decreases with increasing distances, with only a few waves detected per day in late September at ~1 AU. A more detailed analysis of triggered waveform snapshots shows the typical wave frequency at about 3 kHz and wave power about 5e-2 mV<sup>2</sup>/m<sup>2</sup>. The distribution of the relative phase between two components of the projected E-field in the Spacecraft Reference Frame (SRF) shows a mostly linear wave polarization. These waves are interpreted as strongly Doppler-shifted ion-acoustic waves, generated by solar wind ion beams and often accompany large-scale solar wind structures. A detailed analysis of the Doppler-shift using solar wind data from a Proton and Alpha particle Sensor (PAS), a part of Solar Wind Analyzer (SWA), is done for several examples.</p>


2009 ◽  
Vol 27 (4) ◽  
pp. 1457-1467 ◽  
Author(s):  
R. G. Michell ◽  
K. A. Lynch ◽  
C. J. Heinselman ◽  
H. C. Stenbaek-Nielsen

Abstract. Observations of naturally enhanced ion acoustic lines (NEIALs) taken with the Poker Flat Incoherent Scatter Radar (PFISR) using a mode with very high time resolution are presented. The auroral event took place over Poker Flat, Alaska on 8 February 2007 at 09:35 UT (~22:00 MLT), and the radar data are complemented by common-volume high-resolution auroral imaging. The NEIALs occurred during only one of the standard 15-s integration periods. The raw data of this time show very intermittent NEIALs which occur only during a few very short time intervals (≤1 s) within the 15-s period. The time sampling of the raw data, ~19 ms on average, allows study of the time development of the NEIALs, though there are indications that even finer time resolution would be of interest. The analysis is based on the assumption that the NEIAL returns are the result of Bragg scattering from ion-acoustic waves that have been enhanced significantly above thermal levels. The spectra of the raw data indicate that although the up- and down-shifted shoulders can both become enhanced at the same time, (within 19 ms), they are most often enhanced individually. The overall power in the up-and down-shifted shoulders is approximately equal throughout the event, with the exception of one time, when very large up-shifted power was observed with no corresponding down-shifted power. This indicates that during the 480 μs pulse, the strongly enhanced ion-acoustic waves were only traveling downward and not upward. The exact time that the NEIALs occurred was when the radar beam was on the boundary of a fast-moving (~10 km/s), bright auroral structure, as seen in the high resolution auroral imaging of the magnetic zenith. When viewed with high time resolution, the occurrence of NEIALs is associated with rapid changes in auroral luminosity within the radar field of view due to fast-moving auroral fine structures.


Sign in / Sign up

Export Citation Format

Share Document