Nonlinear propagation of ion-acoustic waves and low-frequency electrostatic modes in a dusty plasma

1993 ◽  
Vol 50 (1) ◽  
pp. 37-44 ◽  
Author(s):  
U. A. Mofiz ◽  
Madhabi Islam ◽  
Zarin Ahmed

Nonlinear propagation of ion-acoustic waves and low-frequency electrostatic modes in a dusty plasma is investigated. The evolution equations of these modes are developed and solved analytically. It is found that for small grain charge usual ion-acoustic solitons may exist in a dusty plasma, but increasing grain charge destroys them and finally they may disappear. The low-frequency electrostatic mode may be localized, forming solitons, which may act as centres of wave scattering in a dusty plasma.

2017 ◽  
Vol 95 (7) ◽  
pp. 655-661 ◽  
Author(s):  
Ata-ur Rahman ◽  
A. Qamar ◽  
S. Naseer ◽  
S.N. Naeem

The linear and nonlinear propagation of ion acoustic waves is considered in a degenerate magnetoplasma, composed of relativistic degenerate electrons and an inertial ion fluid. A linear dispersion relation is derived in the linear approximation. The Sagdeev pseudopotential approach is used to investigate the properties of arbitrary amplitude, obliquely propagating ion acoustic solitary waves. The expression for the lower and upper Mach numbers for the existence of magnetized ion acoustic solitons has also been derived. The significant influence on the properties of soliton structures of relevant physical parameters, such as the plasma number density, the obliqueness (the angle between soliton propagation direction and magnetic field), and the soliton speed is also investigated. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.


2007 ◽  
Vol 73 (4) ◽  
pp. 515-521 ◽  
Author(s):  
SAMIRAN GHOSH

AbstractThe nonlinear propagation characteristics of dust ion acoustic waves in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization, ion loss and dust charging are investigated. It is found that the ion acoustic solitary wave in such a dusty plasma is weakly dissipative in nature and is governed by a modified form of the Korteweg–de Vries equation. The analytical solution reveals that the ionization has a destabilizing effect, whereas ion loss and dust charge variation play a stabilizing role to control the ionization instability.


2000 ◽  
Vol 63 (4) ◽  
pp. 343-353 ◽  
Author(s):  
S. K. EL-LABANY ◽  
S. A. EL-WARRAKI ◽  
W. M. MOSLEM

Cylindrical ion-acoustic solitons are investigated in a warm plasma with negative ions and multiple-temperature electrons through the derivation of a cylindrical Korteweg–de Vries equation using a reductive perturbation theory. The results are compared with those for the corresponding planar solitons.


2021 ◽  
pp. 2150468
Author(s):  
Youssoufa Saliou ◽  
Souleymanou Abbagari ◽  
Alphonse Houwe ◽  
M. S. Osman ◽  
Doka Serge Yamigno ◽  
...  

By employing the Modified Sardar Sub-Equation Method (MSEM), several solitons such as W-shape bright, dark solitons, trigonometric function solutions and singular function solutions have been obtained in two famous nonlinear evolution equations which are used to describe waves in quantum electron–positron–ion magnetoplasmas and weakly nonlinear ion-acoustic waves in a plasma. These models are the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov (NLEQZK) equation and the (3+1)-dimensional nonlinear modified Zakharov–Kuznetsov (NLmZK) equation, respectively. Comparing the obtained results with Refs. 32–34 and Refs. 43–46, additional soliton-like solutions have been retrieved and will be useful in future to explain the interaction between lower nonlinear ion-acoustic waves and the parameters of the MSEM and the obtained figures will have more physical explanation.


Sign in / Sign up

Export Citation Format

Share Document