Remote sensing of crop residue cover using multi-temporal Landsat imagery

2012 ◽  
Vol 117 ◽  
pp. 177-183 ◽  
Author(s):  
Baojuan Zheng ◽  
James B. Campbell ◽  
Kirsten M. de Beurs
2021 ◽  
Vol 2 (2) ◽  
pp. 56-64
Author(s):  
Iqbal Eko Noviandi ◽  
Ramadhan Alvien Hanif ◽  
Hasanah Rahma Nur ◽  
Nandi

Indonesia is a developing country whose construction and development are centered on the island of Java, especially in West Java Province. Sukabumi City is one of the areas in West Java. The development of urban areas is expanding due to various human needs to carry out the construction of buildings. Remote sensing that can be used to store developments with multi-temporal analysis with materials is Landsat imagery from 2001 to 2020. The method used is the Normalized Difference Built-up Index (NDBI). The purpose of this study is to map the development of the built-up land from year to year and predict the following years. The results of the research on the significant changes in built-up land occurred between 2013-2020, while from 2001 to 2013 there was not much change. Based on the research results, the total growth of built-up land was 1.539% per year with a population growth rate of 1.4% per year. The results of the analysis show that the area of ​​land built in Sukabumi City in 2028 is 186,7194 km2 or has increased by 21,2808 km2 since 2020.


2019 ◽  
Vol 12 (1) ◽  
pp. 55 ◽  
Author(s):  
Cong Ou ◽  
Jianyu Yang ◽  
Zhenrong Du ◽  
Yiming Liu ◽  
Quanlong Feng ◽  
...  

The greenhouse is the fastest growing food production approach and has become the symbol of protected agriculture with the development of agricultural modernization. Previous studies have verified the effectiveness of remote sensing techniques for mono-temporal greenhouse mapping. In practice, long-term monitoring of greenhouse from remote sensing data is vital for the sustainable management of protected agriculture and existing studies have been limited in understanding its spatiotemporal dynamics. This study aimed to generate multi-temporal greenhouse maps in a typical protected agricultural region (Shouguang region, north China) from 1990 to 2018 using Landsat imagery and the Google Earth Engine and quantify its spatiotemporal dynamics that occur as a consequence of the development of protected agriculture in the study area. The multi-temporal greenhouse maps were produced using random forest supervised classification at seven-time intervals, and the overall accuracy of the results greater than 90%. The total area of greenhouses in the study area expanded by 1061.94 km 2 from 1990 to 2018, with the largest growth occurring in 1995–2010. And a large number of increased greenhouses occurred in 10–35 km northwest and 0–5 km primary roads buffer zones. Differential change trajectories between the total area and number of patches of greenhouses were revealed using global change metrics. Results of five landscape metrics showed that various landscape patterns occurred in both spatial and temporal aspects. According to the value of landscape expansion index in each period, the growth mode of greenhouses was from outlying to edge-expansion and then gradually changed to infilling. Spatial heterogeneity, which measured by Shannon’s entropy, of the increased greenhouses was different between the global and local levels. These results demonstrated the advantage of utilizing Landsat imagery and Google Earth Engine for monitoring the development of greenhouses in a long-term period and provided a more intuitive perspective to understand the process of this special agricultural production approach than relevant social science studies.


2020 ◽  
Vol 12 (6) ◽  
pp. 1018
Author(s):  
Yanxin Xi ◽  
Luyan Ji ◽  
Xiurui Geng

Aquaculture plays an important role in China’s total fisheries production nowadays, and it leads to a few problems, for example water quality degradation, which has damaging effect on the sustainable development of environment. Among the many forms of aquaculture that deteriorate the water quality, disorderly pen culture is especially severe. Pen culture began very early in Yangchenghu Lake and Taihu Lake in China and part of the pen culture still exists. Thus, it is of great significance to evaluate the distribution and area of the pen culture in the two lakes. However, the traditional method for pen culture detection is based on the factual measurement, which is labor and time consuming. At present, with the development of remote sensing technologies, some target detection algorithms for multi/hyper-spectral data have been used in the pen culture detection, but most of them are intended for the single-temporal remote sensing data. Recently, a target detection algorithm called filter tensor analysis (FTA), which is specially designed for multi-temporal remote sensing data, has been reported and has achieved better detection results compared to the traditional single-temporal methods in many cases. This paper mainly aims to investigate the pen culture in Yangchenghu Lake and Taihu Lake with FTA implemented on the multi-temporal Landsat imagery, by determining the optimal time phases combination of the Landsat data in advance. Furthermore, the suitability and superiority of FTA over Constrained Energy Minimization (CEM) in the process of pen culture detection were tested. It was observed in the experiments on the data of those two lakes that FTA can detect the pen culture much more accurately than CEM with Landsat data of selected bands and of limited number of time phases.


2021 ◽  
Vol 36 (5) ◽  
pp. 1341-1358
Author(s):  
Adrian G. Fisher ◽  
Charlotte H. Mills ◽  
Mitchell Lyons ◽  
William K. Cornwell ◽  
Mike Letnic

Author(s):  
Rian Amukti ◽  
Arif Seno Adji ◽  
Syamsuri Ruslan

Shoreline shift have occurred in the Coastal region of Makassar City in recent years due to abrasion and accretion. Spatial temporal feature extraction of the Makassar City Region has been carried out using remote sensing techniques  withRadiometri,  Geometric Corrections and Composite Imagein the Landsat image dataset in 2009 and 2019. This study aims to analyze shoreline shift near Makassar City with remote sensing technology using Landsat imagery data, based on multi-temporal data with visual and digital analysis techniques between 2009 and 2019. This research contributes to local and central government as baseline data (data base) in making decisions for handling coastal areas. The results showed that the length of the Makassar City coastline without including the coastline length of the islands separated from land in a row that is equal to 37.79 km in 2009. While in 2019 there was a significant change that is 49.82 km. This shows the addition of a coastline of 12.03 km in the span of 10 years. These changes are mainly caused by anthropogenic factors, namely the construction of the pier / port and the reclamation and hydro-oceanographic factors, namely waves, currents and tides.


2021 ◽  
Vol 13 (8) ◽  
pp. 1433
Author(s):  
Shobitha Shetty ◽  
Prasun Kumar Gupta ◽  
Mariana Belgiu ◽  
S. K. Srivastav

Machine learning classifiers are being increasingly used nowadays for Land Use and Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice of classifier requires understanding the main factors influencing their performance. The present study investigated firstly the effect of training sampling design on the classification results obtained by Random Forest (RF) classifier and, secondly, it compared its performance with other machine learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)), and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority classes, whereas the SSS method performs well for areas with large intra-class variability. Toward evaluating the performance of machine learning classifiers, RF outperformed Classification and Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with a >95% confidence level. The performance of CART and SVM classifiers were found to be similar. RVM achieved good classification results with a limited number of training samples.


2021 ◽  
Vol 13 (4) ◽  
pp. 604
Author(s):  
Donato Amitrano ◽  
Gerardo Di Martino ◽  
Raffaella Guida ◽  
Pasquale Iervolino ◽  
Antonio Iodice ◽  
...  

Microwave remote sensing has widely demonstrated its potential in the continuous monitoring of our rapidly changing planet. This review provides an overview of state-of-the-art methodologies for multi-temporal synthetic aperture radar change detection and its applications to biosphere and hydrosphere monitoring, with special focus on topics like forestry, water resources management in semi-arid environments and floods. The analyzed literature is categorized on the base of the approach adopted and the data exploited and discussed in light of the downstream remote sensing market. The purpose is to highlight the main issues and limitations preventing the diffusion of synthetic aperture radar data in both industrial and multidisciplinary research contexts and the possible solutions for boosting their usage among end-users.


Sign in / Sign up

Export Citation Format

Share Document