SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system

2015 ◽  
Vol 156 ◽  
pp. 335-348 ◽  
Author(s):  
Eric A. Lehmann ◽  
Peter Caccetta ◽  
Kim Lowell ◽  
Anthea Mitchell ◽  
Zheng-Shu Zhou ◽  
...  
Author(s):  
Tarik Benabdelouahab ◽  
Hayat Lionboui ◽  
Rachid Hadria ◽  
Riad Balaghi ◽  
Abdelghani Boudhar ◽  
...  

Irrigated agriculture is an important strategic sector for Morocco, contributing to food security and employment. Nowadays, irrigation scheme managers shall ensure that water is optimally used. The main objective was to support the irrigation monitoring and management of wheat in the irrigated perimeter using optical remote sensing and crop modeling. The potential of spectral indices derived from SPOT-5 images was explored for quantifying and mapping surface water content changes at large scale. Indices were computed using the reflectance in red, near infrared, and shortwave infrared bands. A field crop model (AquaCrop) was adjusted and tested to simulate the grain yield and the temporal evolution of soil moisture status. This research aimed at providing a scientific and technical approach to assist policymakers and stakeholders to improve monitoring irrigation and mitigating wheat water stress at field and irrigation perimeter levels in semi-arid areas. The approach could lead to operational management tools for an efficient irrigation at field and regional levels.


2020 ◽  
Vol 17 (6) ◽  
pp. 1057-1061 ◽  
Author(s):  
Qianbo Sang ◽  
Yin Zhuang ◽  
Shan Dong ◽  
Guanqun Wang ◽  
He Chen

2021 ◽  
Vol 886 (1) ◽  
pp. 012100
Author(s):  
Munajat Nursaputra ◽  
Siti Halimah Larekeng ◽  
Nasri ◽  
Andi Siady Hamzah

Abstract Periodic forest monitoring needs to be done to avoid forest degradation. In general, forest monitoring can be conducted manually (field surveys) or using technological innovations such as remote sensing data derived from aerial images (drone results) or cloud computing-based image processing. Currently, remote sensing technology provides large-scale forest monitoring using multispectral sensors and various vegetation index processing algorithms. This study aimed to evaluate the use of the Google Earth Engine (GEE) platform, a geospatial dataset platform, in the Vale Indonesia mining concession area to improve accountable forest monitoring. This platform integrates a set of programming methods with a publicly accessible time-series database of satellite imaging services. The method used is NDVI processing on Landsat multispectral images in time series format, which allows for the description of changes in forest density levels over time. The results of this NDVI study conducted on the GEE platform have the potential to be used as a tool and additional supporting data for monitoring forest conditions and improvement in mining regions.


2021 ◽  
Vol 13 (17) ◽  
pp. 3472
Author(s):  
Yuming Wei ◽  
Xiaojie Liu ◽  
Chaoying Zhao ◽  
Roberto Tomás ◽  
Zhuo Jiang

Lanzhou is one of the cities with the higher number of civil engineering projects for mountain excavation and city construction (MECC) on the China’s Loess Plateau. As a result, the city is suffering from severe surface displacement, which is posing an increasing threat to the safety of the buildings. However, up to date, there is no comprehensive and high-precision displacement map to characterize the spatiotemporal surface displacement patterns in the city of Lanzhou. In this study, satellite-based observations, including optical remote sensing and synthetic aperture radar (SAR) sensing, were jointly used to characterize the landscape and topography changes in Lanzhou between 1997 and 2020 and investigate the spatiotemporal patterns of the surface displacement associated with the large-scale MECC projects from 2015 December to March 2021. First, we retrieved the landscape changes in Lanzhou during the last 23 years using multi-temporal optical remote sensing images. Results illustrate that the landscape in local areas of Lanzhou has been dramatically changed as a result of the large-scale MECC projects and rapid urbanization. Then, we optimized the ordinary time series InSAR processing procedure by a “dynamic estimation of digital elevation model (DEM) errors” step added before displacement inversion to avoid the false displacement signals caused by DEM errors. The DEM errors and the high-precision surface displacement maps between December 2015 and March 2021 were calculated with 124 ascending and 122 descending Sentinel-1 SAR images. By combining estimated DEM errors and optical images, we detected and mapped historical MECC areas in the study area since 2000, retrieved the excavated and filling areas of the MECC projects, and evaluated their areas and volumes as well as the thickness of the filling loess. Results demonstrated that the area and volume of the excavated regions were basically equal to that of the filling regions, and the maximum thickness of the filling loess was greater than 90 m. Significant non-uniform surface displacements were observed in the filling regions of the MECC projects, with the maximum cumulative displacement lower than −40 cm. 2D displacement results revealed that surface displacement associated with the MECC project was dominated by settlements. From the correlation analysis between the displacement and the filling thickness, we found that the displacement magnitude was positively correlated with the thickness of the filling loess. This finding indicated that the compaction and consolidation process of the filling loess largely dominated the surface displacement. Our findings are of paramount importance for the urban planning and construction on the Loess Plateau region in which large-scale MECC projects are being developed.


2021 ◽  
Vol 14 (1) ◽  
pp. 143
Author(s):  
Leiyao Liao ◽  
Lan Du ◽  
Yuchen Guo

In the remote sensing image processing field, the synthetic aperture radar (SAR) target-detection methods based on convolutional neural networks (CNNs) have gained remarkable performance relying on large-scale labeled data. However, it is hard to obtain many labeled SAR images. Semi-supervised learning is an effective way to address the issue of limited labels on SAR images because it uses unlabeled data. In this paper, we propose an improved faster regions with CNN features (R-CNN) method, with a decoding module and a domain-adaptation module called FDDA, for semi-supervised SAR target detection. In FDDA, the decoding module is adopted to reconstruct all the labeled and unlabeled samples. In this way, a large number of unlabeled SAR images can be utilized to help structure the latent space and learn the representative features of the SAR images, devoting attention to performance promotion. Moreover, the domain-adaptation module is further introduced to utilize the unlabeled SAR images to promote the discriminability of features with the assistance of the abundantly labeled optical remote sensing (ORS) images. Specifically, the transferable features between the ORS images and SAR images are learned to reduce the domain discrepancy via the mean embedding matching, and the knowledge of ORS images is transferred to the SAR images for target detection. Ultimately, the joint optimization of the detection loss, reconstruction, and domain adaptation constraints leads to the promising performance of the FDDA. The experimental results on the measured SAR image datasets and the ORS images dataset indicate that our method achieves superior SAR target detection performance with limited labeled SAR images.


Author(s):  
B. Xing ◽  
J. Li ◽  
H. Zhu ◽  
P. Wei ◽  
Y. Zhao

As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.


2020 ◽  
Author(s):  
Jianxiu Qiu

<p>The launch of series of Sentinel constellations has provided data continuity of ERS, Envisat, and SPOT-like observations, in order to meet various observational needs for spatially explicit physical, biogeophysical, and biological variables of the ocean, cryosphere, and land research activities. The synergistic use of this publicly-accessible SAR images and temporally collocated optical remote sensing datasets has provided great potential for estimating high-resolution soil moisture information. In this study, advanced integral equation model (AIEM) which simulates the backscattering coefficient of bare soil and the Water-Cloud Model (WCM) accounting for the scattering effect from vegetation, are coupled to map high-resolution soil moisture. Validation conducted in large-scale campaign of Heihe Watershed Allied Telemetry Experimental Research (HiWATER-MUSOEXE) in northwest of China showed RMSE of 0.04~0.071 m3m3. In addition, the accuracies in describing vegetation contribution from backscatter coefficient were intercompared between different models including WCM and ratio vegetation model. Sensitivity analysis of soil moisture estimation accuracy to vegetation index also extends to different optical remote sensing data sets including Sentinel-2, Landsat 8 and MODIS.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 3115 ◽  
Author(s):  
Liqiong Chen ◽  
Wenxuan Shi ◽  
Cien Fan ◽  
Lian Zou ◽  
Dexiang Deng

Automatic ship detection in optical remote sensing images is of great significance due to its broad applications in maritime security and fishery control. Most ship detection algorithms utilize a single-band image to design low-level and hand-crafted features, which are easily influenced by interference like clouds and strong waves and not robust for large-scale variation of ships. In this paper, we propose a novel coarse-to-fine ship detection method based on discrete wavelet transform (DWT) and a deep residual dense network (DRDN) to address these problems. First, multi-spectral images are adopted for sea-land segmentation, and an enhanced DWT is employed to quickly extract ship candidate regions with missing alarms as low as possible. Second, panchromatic images with clear spatial details are used for ship classification. Specifically, we propose the local residual dense block (LRDB) to fully extract semantic feature via local residual connection and densely connected convolutional layers. DRDN mainly consists of four LRDBs and is designed to further remove false alarms. Furthermore, we exploit the multiclass classification strategy, which can overcome the large intra-class difference of targets and identify ships of different sizes. Extensive experiments demonstrate that the proposed method has high robustness in complex image backgrounds and achieves higher detection accuracy than other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document