scholarly journals Observation of Surface Displacement Associated with Rapid Urbanization and Land Creation in Lanzhou, Loess Plateau of China with Sentinel-1 SAR Imagery

2021 ◽  
Vol 13 (17) ◽  
pp. 3472
Author(s):  
Yuming Wei ◽  
Xiaojie Liu ◽  
Chaoying Zhao ◽  
Roberto Tomás ◽  
Zhuo Jiang

Lanzhou is one of the cities with the higher number of civil engineering projects for mountain excavation and city construction (MECC) on the China’s Loess Plateau. As a result, the city is suffering from severe surface displacement, which is posing an increasing threat to the safety of the buildings. However, up to date, there is no comprehensive and high-precision displacement map to characterize the spatiotemporal surface displacement patterns in the city of Lanzhou. In this study, satellite-based observations, including optical remote sensing and synthetic aperture radar (SAR) sensing, were jointly used to characterize the landscape and topography changes in Lanzhou between 1997 and 2020 and investigate the spatiotemporal patterns of the surface displacement associated with the large-scale MECC projects from 2015 December to March 2021. First, we retrieved the landscape changes in Lanzhou during the last 23 years using multi-temporal optical remote sensing images. Results illustrate that the landscape in local areas of Lanzhou has been dramatically changed as a result of the large-scale MECC projects and rapid urbanization. Then, we optimized the ordinary time series InSAR processing procedure by a “dynamic estimation of digital elevation model (DEM) errors” step added before displacement inversion to avoid the false displacement signals caused by DEM errors. The DEM errors and the high-precision surface displacement maps between December 2015 and March 2021 were calculated with 124 ascending and 122 descending Sentinel-1 SAR images. By combining estimated DEM errors and optical images, we detected and mapped historical MECC areas in the study area since 2000, retrieved the excavated and filling areas of the MECC projects, and evaluated their areas and volumes as well as the thickness of the filling loess. Results demonstrated that the area and volume of the excavated regions were basically equal to that of the filling regions, and the maximum thickness of the filling loess was greater than 90 m. Significant non-uniform surface displacements were observed in the filling regions of the MECC projects, with the maximum cumulative displacement lower than −40 cm. 2D displacement results revealed that surface displacement associated with the MECC project was dominated by settlements. From the correlation analysis between the displacement and the filling thickness, we found that the displacement magnitude was positively correlated with the thickness of the filling loess. This finding indicated that the compaction and consolidation process of the filling loess largely dominated the surface displacement. Our findings are of paramount importance for the urban planning and construction on the Loess Plateau region in which large-scale MECC projects are being developed.

2021 ◽  
Vol 11 (15) ◽  
pp. 6923
Author(s):  
Rui Zhang ◽  
Zhanzhong Tang ◽  
Dong Luo ◽  
Hongxia Luo ◽  
Shucheng You ◽  
...  

The use of remote sensing technology to monitor farmland is currently the mainstream method for crop research. However, in cloudy and misty regions, the use of optical remote sensing image is limited. Synthetic aperture radar (SAR) technology has many advantages, including high resolution, multi-mode, and multi-polarization. Moreover, it can penetrate clouds and mists, can be used for all-weather and all-time Earth observation, and is sensitive to the shape of ground objects. Therefore, it is widely used in agricultural monitoring. In this study, the polarization backscattering coefficient on time-series SAR images during the rice-growing period was analyzed. The rice identification results and accuracy of InSAR technology were compared with those of three schemes (single-time-phase SAR, multi-time-phase SAR, and combination of multi-time-phase SAR and InSAR). Results show that VV and VH polarization coherence coefficients can well distinguish artificial buildings. In particular, VV polarization coherence coefficients can well distinguish rice from water and vegetation in August and September, whereas VH polarization coherence coefficients can well distinguish rice from water and vegetation in August and October. The rice identification accuracy of single-time series Sentinel-1 SAR image (78%) is lower than that of multi-time series SAR image combined with InSAR technology (81%). In this study, Guanghan City, a cloudy region, was used as the study site, and a good verification result was obtained.


2021 ◽  
Vol 13 (8) ◽  
pp. 1556
Author(s):  
Chuanhao Pu ◽  
Qiang Xu ◽  
Kuanyao Zhao ◽  
Yanan Jiang ◽  
Lina Hao ◽  
...  

A mega project, Mountain Excavation and City Construction (MECC), was launched in the hilly and gully region of the Chinese Loess Plateau in 2012, in order to address the shortage of available land and create new flat land for urban construction. However, large-scale land creation and urban expansion significantly alters the local geological environment, leading to severe ground deformation. This study investigated the topographic changes, ground deformation, and their interactions due to the MECC project in the Yan’an New District (YND). First, new surface elevations were generated using ZiYuan-3 (ZY-3) stereo images acquired after the construction in order to map the local topographic changes and the fill thickness associated with the MECC project. Then, the interferometric synthetic aperture radar (InSAR) time series and 32 Sentinel-1A images were used to assess the spatial patterns of the ground deformation in the YND during the postconstruction period (2017–2018). By combining the InSAR-derived results and topographic change features, the relationship between the ground deformation and large-scale land creation was further analyzed. The results indicated that the MECC project in the YND has created over 22 km2 of flat land, including 10.8 km2 of filled area, with a maximum fill thickness of ~110 m. Significant uneven ground deformation was detected in the land-creation area, with a maximum subsidence rate of approximately 121 mm/year, which was consistent with the field survey. The strong correlation between the observed subsidence patterns and the land creation project suggested that this recorded uneven subsidence was primarily related to the spatial distribution of the filling works, along with the changes in the thickness and geotechnical properties of the filled loess; moreover, rapid urbanization, such as road construction, can accelerate the subsidence process. These findings can guide improvements in urban planning and the mitigation of geohazards in regions experiencing large-scale land construction.


Author(s):  
Tarik Benabdelouahab ◽  
Hayat Lionboui ◽  
Rachid Hadria ◽  
Riad Balaghi ◽  
Abdelghani Boudhar ◽  
...  

Irrigated agriculture is an important strategic sector for Morocco, contributing to food security and employment. Nowadays, irrigation scheme managers shall ensure that water is optimally used. The main objective was to support the irrigation monitoring and management of wheat in the irrigated perimeter using optical remote sensing and crop modeling. The potential of spectral indices derived from SPOT-5 images was explored for quantifying and mapping surface water content changes at large scale. Indices were computed using the reflectance in red, near infrared, and shortwave infrared bands. A field crop model (AquaCrop) was adjusted and tested to simulate the grain yield and the temporal evolution of soil moisture status. This research aimed at providing a scientific and technical approach to assist policymakers and stakeholders to improve monitoring irrigation and mitigating wheat water stress at field and irrigation perimeter levels in semi-arid areas. The approach could lead to operational management tools for an efficient irrigation at field and regional levels.


2019 ◽  
Vol 11 (12) ◽  
pp. 1470 ◽  
Author(s):  
Nan Xia ◽  
Liang Cheng ◽  
ManChun Li

Urban areas are essential to daily human life; however, the urbanization process also brings about problems, especially in China. Urban mapping at large scales relies heavily on remote sensing (RS) data, which cannot capture socioeconomic features well. Geolocation datasets contain patterns of human movement, which are closely related to the extent of urbanization. However, the integration of RS and geolocation data for urban mapping is performed mostly at the city level or finer scales due to the limitations of geolocation datasets. Tencent provides a large-scale location request density (LRD) dataset with a finer temporal resolution, and makes large-scale urban mapping possible. The objective of this study is to combine multi-source features from RS and geolocation datasets to extract information on urban areas at large scales, including night-time lights, vegetation cover, land surface temperature, population density, LRD, accessibility, and road networks. The random forest (RF) classifier is introduced to deal with these high-dimension features on a 0.01 degree grid. High spatial resolution land cover (LC) products and the normalized difference built-up index from Landsat are used to label all of the samples. The RF prediction results are evaluated using validation samples and compared with LC products for four typical cities. The results show that night-time lights and LRD features contributed the most to the urban prediction results. A total of 176,266 km2 of urban areas in China were extracted using the RF classifier, with an overall accuracy of 90.79% and a kappa coefficient of 0.790. Compared with existing LC products, our results are more consistent with the manually interpreted urban boundaries in the four selected cities. Our results reveal the potential of Tencent LRD data for the extraction of large-scale urban areas, and the reliability of the RF classifier based on a combination of RS and geolocation data.


2020 ◽  
Vol 17 (6) ◽  
pp. 1057-1061 ◽  
Author(s):  
Qianbo Sang ◽  
Yin Zhuang ◽  
Shan Dong ◽  
Guanqun Wang ◽  
He Chen

2015 ◽  
Vol 156 ◽  
pp. 335-348 ◽  
Author(s):  
Eric A. Lehmann ◽  
Peter Caccetta ◽  
Kim Lowell ◽  
Anthea Mitchell ◽  
Zheng-Shu Zhou ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2052
Author(s):  
Dongchuan Yan ◽  
Guoqing Li ◽  
Xiangqiang Li ◽  
Hao Zhang ◽  
Hua Lei ◽  
...  

Dam failure of tailings ponds can result in serious casualties and environmental pollution. Therefore, timely and accurate monitoring is crucial for managing tailings ponds and preventing damage from tailings pond accidents. Remote sensing technology facilitates the regular extraction and monitoring of tailings pond information. However, traditional remote sensing techniques are inefficient and have low levels of automation, which hinders the large-scale, high-frequency, and high-precision extraction of tailings pond information. Moreover, research into the automatic and intelligent extraction of tailings pond information from high-resolution remote sensing images is relatively rare. However, the deep learning end-to-end model offers a solution to this problem. This study proposes an intelligent and high-precision method for extracting tailings pond information from high-resolution images, which improves deep learning target detection model: faster region-based convolutional neural network (Faster R-CNN). A comparison study is conducted and the model input size with the highest precision is selected. The feature pyramid network (FPN) is adopted to obtain multiscale feature maps with rich context information, the attention mechanism is used to improve the FPN, and the contribution degrees of feature channels are recalibrated. The model test results based on GoogleEarth high-resolution remote sensing images indicate a significant increase in the average precision (AP) and recall of tailings pond detection from that of Faster R-CNN by 5.6% and 10.9%, reaching 85.7% and 62.9%, respectively. Considering the current rapid increase in high-resolution remote sensing images, this method will be important for large-scale, high-precision, and intelligent monitoring of tailings ponds, which will greatly improve the decision-making efficiency in tailings pond management.


2019 ◽  
Vol 26 (2) ◽  
pp. 63
Author(s):  
Desti Ayunda ◽  
Ketut Wikantika ◽  
Dandy A. Novresiandi ◽  
Agung B. Harto ◽  
Riantini Virtriana ◽  
...  

From previous research reported that tropical peatland is one of terrestrial carbon storage in Earth, and has contribution to climate change. Synthetic Aperture Radar (SAR) is one of remote sensing technology which is more efcient than optical remote sensing. Its ability to penetrate cloud makes it useful to monitor tropical environment. This research is conducted in a tropical peatland in Siak Regency, Riau Province. This research was conducted to identify tropical peatland in Siak Regency using polarimetric decomposition, unsupervised classifcation ISODATA, and Radar Vegetation Index (RVI) from SAR data that had been geometrically and radiometrically corrected. Polarimetric decomposition Freeman-Durden was performed to analyze radar backscattering mechanism in tropical peatland, which shows that volume and surface scattering was dominant because of the presence of vegetation and open area. Unsupervised classifcation ISODATA was then performed to extract “shrub class”. By assessing its accuracy, the class that represents shrub class in reference map was selected as the selected “shrub class”. RVI then was calculated using a certain formula. Spatial analysis was then conducted to acquire certain information that average value of RVI in tropical peatland tend to be higher than in non-tropical peatland. By integrating selected “shrub class” and RVI, peat classes were extracted. The best peat class was selected by comparing with peatland referenced map which is acquired from the Indonesian Agency for Agricultural Resources and Development (IAARD) using error matrix. In this research, the best peat class yielded 73.5 percent of Producer’s Accuracy (PA), 81.6 percent of User’s Accuracy (UA), 66.1 percent of Overall Accuracy (OA), and 0.1079 of Kappa coefcient (Ks).


Sign in / Sign up

Export Citation Format

Share Document