Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables

2015 ◽  
Vol 160 ◽  
pp. 206-221 ◽  
Author(s):  
N. Wanders ◽  
M. Pan ◽  
E.F. Wood
2015 ◽  
Vol 12 (6) ◽  
pp. 5749-5787 ◽  
Author(s):  
W. Zhan ◽  
M. Pan ◽  
N. Wanders ◽  
E. F. Wood

Abstract. Rainfall and soil moisture are two key elements in modeling the interactions between the land surface and the atmosphere. Accurate and high-resolution real-time precipitation is crucial for monitoring and predicting the on-set of floods, and allows for alert and warning before the impact becomes a disaster. Assimilation of remote sensing data into a flood-forecasting model has the potential to improve monitoring accuracy. Space-borne microwave observations are especially interesting because of their sensitivity to surface soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We compare updated precipitation with real-time precipitation before and after adjustment and with NLDAS gauge-radar observations. Results show that satellite soil moisture retrievals provide additional information by correcting errors in rainfall bias. High accuracy soil moisture retrievals, when merged with precipitation, generally increase both rainfall frequency and intensity, and are most effective in the correction of rainfall under dry to normal surface condition while limited/negative improvement is seen over wet/saturated surfaces. Errors from soil moisture, mixed among the real signal, may generate a false rainfall signal approximately 2 mm day−1 and thus lower the precipitation accuracy after adjustment.


2020 ◽  
Author(s):  
José Miguel Barrios ◽  
Alirio Arboleda ◽  
Françoise Gellens-Meulenberghs

<p>The Satellite Application Facility on Analysis on Land Surface Analysis (LSA-SAF) has been set up by the European Organization of the Exploitation of Meteorological Satellite (EUMETSAT, see http://lsa-saf.eumetsat.int/). Its major goal is the development of products characterizing the condition of the Earth's continental surfaces on the basis of meteorological satellite observations.</p><p>The exchange of energy and water fluxes between the Earth's surface and the atmosphere is a major phenomenon driving a series of processes that impact human life. Noteworthy examples are: agriculture yields, local weather conditions, water availability, intensity and extent of droughts, the ability of ecosystems to provide services to society, etc. The relevance of these processes has motivated the exploitation of satellite observations from the Meteosat Second Generation (MSG) to develop algorithms for the estimation of evapotranspiration (ET) and both latent and sensible heat fluxes in an operational framework functioning in near-real time.</p><p>The LSA-SAF ET product comprises half-hourly and daily estimates across Europe, Africa and the east side of South America. The quality of the ET product has been assessed by contrasting the estimates to in-situ measurements in flux measurement stations scattered across diverse climatic regions and plant cover types. The validation exercises -conducted by the development team as well as by independent studies- have corroborated the good quality of the product.</p><p>This contribution is intended to share details of the main principles of the algorithm (with insight to latest developments), the forcing variables (including several products derived from the SEVIRI instrument on-board MSG) and the ways of accessing and using the data.</p>


2015 ◽  
Vol 19 (10) ◽  
pp. 4275-4291 ◽  
Author(s):  
W. Zhan ◽  
M. Pan ◽  
N. Wanders ◽  
E. F. Wood

Abstract. Rainfall and soil moisture are two key elements in modeling the interactions between the land surface and the atmosphere. Accurate and high-resolution real-time precipitation is crucial for monitoring and predicting the onset of floods, and allows for alert and warning before the impact becomes a disaster. Assimilation of remote sensing data into a flood-forecasting model has the potential to improve monitoring accuracy. Space-borne microwave observations are especially interesting because of their sensitivity to surface soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We compare updated precipitation with real-time precipitation before and after adjustment and with NLDAS gauge-radar observations. Results show that satellite soil moisture retrievals provide additional information by correcting errors in rainfall bias. The assimilation is most effective in the correction of medium rainfall under dry to normal surface conditions, while limited/negative improvement is seen over wet/saturated surfaces. On the other hand, high-frequency noises in satellite soil moisture impact the assimilation by increasing rainfall frequency. The noise causes larger uncertainty in the false-alarmed rainfall over wet regions. A threshold of 2 mm day−1 soil moisture change is identified and applied to the assimilation, which masked out most of the noise.


2021 ◽  
Vol 18 (3) ◽  
pp. 716-734
Author(s):  
Muhammad Masood ◽  
Ghulam Nabi ◽  
Muhammad Babur ◽  
Aftab Hussain Azhar ◽  
Muhammad Kaleem Ullah

2019 ◽  
Vol 11 (3) ◽  
pp. 327 ◽  
Author(s):  
Xia Wang ◽  
Feng Ling ◽  
Huaiying Yao ◽  
Yaolin Liu ◽  
Shuna Xu

Mapping land surface water bodies from satellite images is superior to conventional in situ measurements. With the mission of long-term and high-frequency water quality monitoring, the launch of the Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A and Sentinel-3B provides the best possible approach for near real-time land surface water body mapping. Sentinel-3 OLCI contains 21 bands ranging from visible to near-infrared, but the spatial resolution is limited to 300 m, which may include lots of mixed pixels around the boundaries. Sub-pixel mapping (SPM) provides a good solution for the mixed pixel problem in water body mapping. In this paper, an unsupervised sub-pixel water body mapping (USWBM) method was proposed particularly for the Sentinel-3 OLCI image, and it aims to produce a finer spatial resolution (e.g., 30 m) water body map from the multispectral image. Instead of using the fraction maps of water/non-water or multispectral images combined with endmembers of water/non-water classes as input, USWBM directly uses the spectral water index images of the Normalized Difference Water Index (NDWI) extracted from the Sentinel-3 OLCI image as input and produces a water body map at the target finer spatial resolution. Without the collection of endmembers, USWBM accomplished the unsupervised process by developing a multi-scale spatial dependence based on an unsupervised sub-pixel Fuzzy C-means (FCM) clustering algorithm. In both validations in the Tibet Plate lake and Poyang lake, USWBM produced more accurate water body maps than the other pixel and sub-pixel based water body mapping methods. The proposed USWBM, therefore, has great potential to support near real-time sub-pixel water body mapping with the Sentinel-3 OLCI image.


2020 ◽  
Vol 12 (17) ◽  
pp. 2861
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Jicheng Liu

Soil moisture plays a vital role for the understanding of hydrological, meteorological, and climatological land surface processes. To meet the need of real time global soil moisture datasets, a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and Atmospheric Administration to produce a one-stop shop for soil moisture observations from all available satellite sensors. What makes the SMOPS unique is its near real time global blended soil moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been updated twice based on the users’ feedbacks through improving retrieval algorithms and including observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since 2017. Significant differences in climatological averages lead to remarkable distinctions in data quality between the newest and the older versions of SMOPS blended soil moisture products. This study reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and increased correlations with respect to the quality controlled in situ measurements. The new version SMOPS also presents more robust agreements with the European Space Agency’s Climate Change Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological researches, as well as numerical weather, climate, and water prediction operations.


2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Jie Hsu ◽  
Xiuzhen Li ◽  
Liping Deng

This study assessed four near-real-time satellite precipitation products (NRT SPPs) of Global Satellite Mapping of Precipitation (GSMaP)—NRT v6 (hereafter NRT6), NRT v7 (hereafter NRT7), Gauge-NRT v6 (hereafter GNRT6), and Gauge-NRT v7 (hereafter GNRT7)— in representing the daily and monthly rainfall variations over Taiwan, an island with complex terrain. The GNRT products are the gauge-adjusted version of NRT products. Evaluations for warm (May–October) and cold months (November–April) were conducted from May 2017 to April 2020. By using observations from more than 400 surface gauges in Taiwan as a reference, our evaluations showed that GNRT products had a greater error than NRT products in underestimating the monthly mean rainfall, especially during the warm months. Among SPPs, NRT7 performed best in quantitative monthly mean rainfall estimation; however, when examining the daily scale, GNRT6 and GNRT7 were superior, particularly for monitoring stronger (i.e., more intense) rainfall events during warm and cold months, respectively. Spatially, the major improvement from NRT6 to GNRT6 (from NRT7 to GNRT7) in monitoring stronger rainfall events over southwestern Taiwan was revealed during warm (cold) months. From NRT6 to NRT7, the improvement in daily rainfall estimation primarily occurred over southwestern and northwestern Taiwan during the warm and cold months, respectively. Possible explanations for the differences between the ability of SPPs are attributed to the algorithms used in SPPs. These findings highlight that different NRT SPPs of GSMaP should be used for studying or monitoring the rainfall variations over Taiwan for different purposes (e.g., warning of floods in different seasons, studying monthly or daily precipitation features in different seasons, etc.).


Sign in / Sign up

Export Citation Format

Share Document