scholarly journals Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation

2019 ◽  
Vol 232 ◽  
pp. 111317 ◽  
Author(s):  
Zunyi Xie ◽  
Stuart R. Phinn ◽  
Edward T. Game ◽  
David J. Pannell ◽  
Richard J. Hobbs ◽  
...  
2019 ◽  
Vol 12 (1) ◽  
pp. 23 ◽  
Author(s):  
Daniel R. Richards ◽  
Richard N. Belcher

Urban vegetation provides many ecosystem services that make cities more liveable for people. As the world continues to urbanise, the vegetation cover in urban areas is changing rapidly. Here we use Google Earth Engine to map vegetation cover in all urban areas larger than 15 km2 in 2000 and 2015, which covered 390,000 km2 and 490,000 km2 respectively. In 2015, urban vegetation covered a substantial area, equivalent to the size of Belarus. Proportional vegetation cover was highly variable, and declined in most urban areas between 2000 and 2015. Declines in proportional vegetated cover were particularly common in the Global South. Conversely, proportional vegetation cover increased in some urban areas in eastern North America and parts of Europe. Most urban areas that increased in vegetation cover also increased in size, suggesting that the observed net increases were driven by the capture of rural ecosystems through low-density suburban sprawl. Far fewer urban areas achieved increases in vegetation cover while remaining similar in size, although this trend occurred in some regions with shrinking populations or economies. Maintaining and expanding urban vegetation cover alongside future urbanisation will be critical for the well-being of the five billion people expected to live in urban areas by 2030.


2021 ◽  
Vol 936 (1) ◽  
pp. 012038
Author(s):  
Benedict ◽  
Lalu Muhamad Jaelani

Abstract Java is Indonesia’s and the world’s most populous island. The increase in population on the island of Java reduces the area of forest and other vegetation covers. Landslides, floods, and other natural disasters are caused by reduced vegetation cover. Furthermore, it has the potential to lead to the extinction of flora and fauna. The Normalized Difference Vegetation Index (NDVI) can be used to monitor the vegetation cover. This study analyzes the NDVI changes value from 2005 to 2020 using Terra and Aqua MODIS image data processed using Google Earth Engine. Processing was carried out in some stages: down-setting, performing NDVI processing, calculating monthly average NDVI, calculating annual average NDVI, and analyzing. From the study results, the NDVI value of Terra and Aqua MODIS data has a solid but imperfect correlation coefficient due to differences in orbital time which causes differences in solar zenith angle, sensor viewing angle, and azimuth angle. Then from this study, it was found that overall, changes in vegetation density cover on the island of Java decreased, which was indicated by the NDVI decline rate of -0.00047/year. The most significant decrease in NDVI value occurred in the period 2015–2016, covering an area of 13994.630 km2, and the most significant increase in NDVI occurred in the period 2010–2011, covering an area of 2256.101 km2.


2021 ◽  
Vol 21 (2) ◽  
pp. 159-170
Author(s):  
Septianto Aldiansyah ◽  
Masita Dwi Mandini Mannesa ◽  
Supriatna Supriatna

Vegetation cover plays an important role in controlling the view, boundaries, air temperature, living place and aesthetics in an area. Vegetation cover changes can be caused by changes in temperature, rainfall and human activities. Google Earth Engine (GEE) provides machine learning algorithms such as NDVI which are very useful in extracting vegetation density levels from imagery. The purpose of this study was to analyze vegetation cover changes by human activities in relation to the geomorphological form of Kendari City. The imagery used in multi-temporal monitoring are Landsat-7 ETM in 2000, Landsat-5 TM in 2005 and 2010 and Landsat 8 OLI in 2015 and 2020. Input machine learning using near infrared (NIR) and red (Red) for the NDVI Algorithm while the geomorphological form uses SRTM imagery. The classification of vegetation cover consists of water bodies, open field, built areas and roads covered with asphalt, paving or soil, plantations/agriculture, bushes, grass, reeds, green open space and forests. Each sub-district experienced a decrease in vegetation cover in the form of plantations/agriculture, bushes, grass, reeds, green open space except for the West Kendari District which tended to be varied. The forest area is getting better every year. The existence of protected forests and geomorphological forms such as lowlands are the driving factors for changes in vegetation cover, while low hills and high hills are flat to steep are contrainst factors. Machine learning in GEE is very helpful in monitoring vegetation cover changes and has an NDVI algorithm that is quite easy to apply.


Author(s):  
Mauricio Vega-Araya

La Tierra y su biosfera están cambiando constantemente, por lo tanto, es fundamental detectar los cambios con el fin de entender su impacto en los ecosistemas terrestres. Los esquemas de monitoreo de ecosistemas han evolucionado rápidamente en las ultimas décadas. En el caso del monitoreo forestal, los métodos y herramientas que facilitan la utilización de imágenes satelitales permiten realizar este monitoreo con el cual se puede detectar donde y cuando un bosque es eliminado o afectado debido a un evento de deforestación o bien de fuego, lo anterior casi en tiempo real. Estas nuevas herramientas están disponibles para su implementación, sin embargo, ningún paı́s de la región centroamericana y el Caribe ha implementado un sistema como herramienta de decisión dentro de una estructura de gobierno central o federal debido a la ausencia de programas de transferencia de tecnologı́a o programas de capacitación de talento local. Los sensores remotos proporcionan mediciones consistentes y repetibles que permiten la captura de los efectos de muchos procesos que causan el cambio, incluyendo, por ejemplo, incendios, ataques de insectos, agentes de cambio naturales y antropogénicas como por ejemplo, la deforestación, la urbanización, la agricultura, etc. Las series temporales de imágenes de satélite proporcionan maneras para detectar y vigilar cambios en el tiempo y en el espacio, esto consistentemente durante los últimos 30 años a nivel mundial. Los incendios forestales afectan el proceso de sucesión del bosque, no obstante, es muy limitada la existencia de estudios locales que relacionen el efecto de los incendios forestales con las diferencias en la información espectral a partir de sensoramiento remoto. En el presente estudio se plantea y propone la utilización y aprovechamiento de lo que se ha denominado grandes datos, especialmente con el advenimiento muchas plataformas de sensores remotos como Landsat, MODIS y recientemente Sentinel, para identificar cuál es el efecto de los incendios forestales en la sucesión y sus elementos perturbadores, como por ejemplo, la presencia de lianas. Se procesaron las series temporales se usó la plataforma digital Google Earth Engine, que permitió la selección y reducción de la información espacial de los ı́ndices de vegetación en tendencia, estacionalidad y residuos. Se analizó la respuesta de estos ı́ndices en sitios con diferente afectación por incendios forestales. Con estos índices se pretende desarrollar modelos de clasificación de series espaciales de tiempo de los ı́ndices y poder ası́ comprender los cambios en el tiempo y el espacio de los ecosistemas afectados por incendios forestales. Preliminarmente, se encontró una relación entre la incidencia de los incendios forestales y el fenómeno del Niño-Oscilación del Sur para el índice de vegetación denominado índice de área foliar. Además, la evidencia indica que el índice normalizado de vegetación si presenta diferencias respecto a los sitios que tienen un historial de fuegos diferente. El establecer esta relación implica estudiar también los regı́menes de precipitación y temperatura. El descomponer las series de tiempo facilitó la correlación con otras series de tiempo, permitiendo establecer las bases de un monitoreo y a su vez, relacionar las índices de vegetación y su variación con otros elementos climáticos, como por ejemplo, el efecto ENOS.


2018 ◽  
Vol 54(9) ◽  
pp. 29
Author(s):  
Võ Quốc Tuấn ◽  
Nguyễn Thiên Hoa ◽  
Huỳnh Thị Kim Nhân ◽  
Đặng Hoàng Khải

Sign in / Sign up

Export Citation Format

Share Document