scholarly journals Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant

2021 ◽  
Vol 264 ◽  
pp. 112609
Author(s):  
Bastian Siegmann ◽  
Maria Pilar Cendrero-Mateo ◽  
Sergio Cogliati ◽  
Alexander Damm ◽  
John Gamon ◽  
...  
Author(s):  
Annalisa Di Cicco ◽  
Remika Gupana ◽  
Alexander Damm ◽  
Simone Colella ◽  
Federico Angelini ◽  
...  

The “FLEX 2018” cruise, organized by the CNR-ISMAR in frame of the ESA “FLEXSense Campaign 2018” and CMEMS project, provided a ground station for several bio-optical instruments that investigated the coastal waters of the Tyrrhenian Sea in June 2018. The field measurements were performed in time synergy with Sentinel 3A and Sentinel 3B satellites and HyPlant airborne imaging spectrometer. Active and passive fluorescence were investigated at different scales in coastal waters to support preparatory activities of the FLuorescence EXplorer (FLEX) satellite mission.


2021 ◽  
Vol 18 (2) ◽  
pp. 441-465
Author(s):  
Peiqi Yang ◽  
Christiaan van der Tol ◽  
Petya K. E. Campbell ◽  
Elizabeth M. Middleton

Abstract. Estimates of the gross terrestrial carbon uptake exhibit large uncertainties. Sun-induced chlorophyll fluorescence (SIF) has an apparent near-linear relationship with gross primary production (GPP). This relationship will potentially facilitate the monitoring of photosynthesis from space. However, the exact mechanistic connection between SIF and GPP is still not clear. To explore the physical and physiological basis for their relationship, we used a unique data set comprising continuous field measurements of leaf and canopy fluorescence and photosynthesis of corn over a growing season. We found that, at canopy scale, the positive relationship between SIF and GPP was dominated by absorbed photosynthetically active radiation (APAR), which was equally affected by variations in incoming radiation and changes in canopy structure. After statistically controlling these underlying physical effects, the remaining correlation between far-red SIF and GPP due solely to the functional link between fluorescence and photosynthesis at the photochemical level was much weaker (ρ=0.30). Active leaf level fluorescence measurements revealed a moderate positive correlation between the efficiencies of fluorescence emission and photochemistry for sunlit leaves in well-illuminated conditions but a weak negative correlation in the low-light condition, which was negligible for shaded leaves. Differentiating sunlit and shaded leaves in the light use efficiency (LUE) models for SIF and GPP facilitates a better understanding of the SIF–GPP relationship at different environmental and canopy conditions. Leaf level fluorescence measurements also demonstrated that the sustained thermal dissipation efficiency dominated the seasonal energy partitioning, while the reversible heat dissipation dominated the diurnal leaf energy partitioning. These diurnal and seasonal variations in heat dissipation underlie, and are thus responsible for, the observed remote-sensing-based link between far-red SIF and GPP.


1998 ◽  
Author(s):  
Andre J. Villemaire ◽  
Serge Fortin ◽  
Claude Lafond ◽  
Marc-Andre A. Soucy ◽  
Jean-Francois Legault ◽  
...  

2019 ◽  
Author(s):  
Takahiro Kawashima ◽  
Fumie Kataoka ◽  
Tetsuya Kaku ◽  
Akihiko Kuze ◽  
Hiroshi Suto ◽  
...  

Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 607-621 ◽  
Author(s):  
Sanne Diek ◽  
Sabine Chabrillat ◽  
Marco Nocita ◽  
Michael E. Schaepman ◽  
Rogier de Jong

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
W. Dean Hively ◽  
Gregory W. McCarty ◽  
James B. Reeves ◽  
Megan W. Lang ◽  
Robert A. Oesterling ◽  
...  

Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm,∼10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted withR2>0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a3×3low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.


2001 ◽  
Vol 67 (11) ◽  
pp. 5267-5272 ◽  
Author(s):  
Thomas H. Painter ◽  
Brian Duval ◽  
William H. Thomas ◽  
Maria Mendez ◽  
Sara Heintzelman ◽  
...  

ABSTRACT We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and babsorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I 0.68) varies with algal concentration (Ca ). Using the relationshipCa = 81019.2 I 0.68+ 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2.


2021 ◽  
Author(s):  
Kezia Lange ◽  
Andreas C. Meier ◽  
Michel Van Roozendael ◽  
Thomas Wagner ◽  
Thomas Ruhtz ◽  
...  

<p>Airborne imaging DOAS and ground-based stationary and mobile DOAS measurements were conducted during the ESA funded S5P-VAL-DE-Ruhr campaign in September 2020 in the Ruhr area. The Ruhr area is located in Western Germany and is a pollution hotspot in Europe with urban character as well as large industrial emitters. The measurements are used to validate data from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) with focus on the NO<sub>2</sub> tropospheric vertical column product.</p><p>Seven flights were performed with the airborne imaging DOAS instrument, AirMAP, providing continuous maps of NO<sub>2</sub> in the layers below the aircraft. These flights cover many S5P ground pixels within an area of about 40 km side length and were accompanied by ground-based stationary measurements and three mobile car DOAS instruments. Stationary measurements were conducted by two Pandora, two zenith-sky and two MAX-DOAS instruments distributed over three target areas, partly as long-term measurements over a one-year period.</p><p>Airborne and ground-based measurements were compared to evaluate the representativeness of the measurements in time and space. With a resolution of about 100 x 30 m<sup>2</sup>, the AirMAP data creates a link between the ground-based and the TROPOMI measurements with a resolution of 3.5 x 5.5 km<sup>2</sup> and is therefore well suited to validate TROPOMI's tropospheric NO<sub>2</sub> vertical column.</p><p>The measurements on the seven flight days show strong variability depending on the different target areas, the weekday and meteorological conditions. We found an overall low bias of the TROPOMI operational NO<sub>2</sub> data for all three target areas but with varying magnitude for different days. The campaign data set is compared to custom TROPOMI NO<sub>2</sub> products, using different auxiliary data, such as albedo or a priori vertical profiles to evaluate the influence on the TROPOMI data product. Analyzing and comparing the different data sets provides more insight into the high spatial and temporal heterogeneity in NO<sub>2</sub> and its impact on satellite observations and their validation.</p>


2015 ◽  
Vol 23 (1) ◽  
pp. 15-21
Author(s):  
陈伟 CHEN Wei ◽  
郑玉权 ZHENG Yu-quan ◽  
薛庆生 XUE Qing-sheng

Sign in / Sign up

Export Citation Format

Share Document