scholarly journals Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings

2020 ◽  
Vol 131 ◽  
pp. 109980 ◽  
Author(s):  
X.J. Luo ◽  
Lukumon O. Oyedele ◽  
Anuoluwapo O. Ajayi ◽  
Olugbenga O. Akinade ◽  
Hakeem A. Owolabi ◽  
...  
2020 ◽  
Vol 305 ◽  
pp. 163-168
Author(s):  
Peng Gu ◽  
Chuan Min Zhu ◽  
Yin Yue Wu ◽  
Andrea Mura

As the typical particle-reinforced aluminum matrix composite, SiCp/Al composite has low density, high elastic modulus and high thermal conductivity, and is one of the most competitive metal matrix composites. Grinding is the main processing technique of SiCp/Al composite, energy consumption of the grinding process provides guidance for the energy saving, which is the aim of green manufacturing. In this paper, grinding experiments were designed and conducted to obtain the energy consumption of the grinding machine tool. The Particle Swarm Optimization (PSO) BP neural network prediction model was applied in the energy consumption prediction model of SiCp/Al composite in grinding. It showed that the Particle Swarm Optimization (PSO) BP neural network prediction model has high prediction accuracy. The prediction model of energy consumption based on PSO-BP neural network is helpful in energy saving, which contributes to greening manufacturing.


Author(s):  
Gurpreet Kaur ◽  
Mohit Srivastava ◽  
Amod Kumar

In command and control applications, feature extraction process is very important for good accuracy and less learning time. In order to deal with these metrics, we have proposed an automated combined speaker and speech recognition technique. In this paper five isolated words are recorded with four speakers, two males and two females. We have used the Mel Frequency Cepstral Coefficient (MFCC)  feature extraction method with Genetic Algorithm to optimize the extracted features and generate an appropriate feature set. In first phase, feature extraction using MFCC is executed following the feature optimization using Genetic Algorithm and in last & third phase, training is conducted using the Deep Neural Network. In the end, evaluation and validation of the proposed work model is done by setting real environment. To check the efficiency of the proposed work, we have calculated the parameters like accuracy, precision rate, recall rate, sensitivity and specificity..


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yin Gao ◽  
Ke Chen ◽  
Hong Gao ◽  
Hongmei Zheng ◽  
Lei Wang ◽  
...  

In the process of minimizing the energy consumption of a 3-RRR planar parallel manipulator (3-RRR PPM) and even general parallel kinematic manipulators, obtaining optimal results usually depends on particular functional relation between the instantaneous position of the moving platform and the kinetic time, which is called a displacement model (DM). Nevertheless, it is likely that although the movement time and path of a moving platform are the same, different amounts of energy are consumed for different DMs of the moving platform. To address this, a method of using long short-term memory neural network (LSTM-NN) instead of a complex theoretical model to predict the energy consumption of a 3-RRR PPM was presented. Subsequently, inverse dynamic equations of 3-RRR PPM were established based on the Newton–Euler method and solved using QR decomposition. Meanwhile, energy consumption between any two points in workspace of the 3-RRR PPM was programmed to provide the LSTM-NN with abundant precise training data. In view of time-varying characteristics of energy consumption prediction, the network architecture was developed based on the principle of LSTM-NN, and root-mean-square error (RMSE) was taken as the loss function. After acquiring training data, the RMSE of the LSTM-NN reached 0.00041 using whale optimization algorithm (WOA) with no need for the gradient of the loss function, so the lack of solving precision in training LSTM-NN was effectively improved. Finally, two different DMs of a moving platform with the same path and movement time were chosen to compare the total energy consumption of the 3-RRR PPM from the simulations, predictions, and experiments. The results showed that the relative error between predicted and experimental data was less than 2.50%. Therefore, the energy consumption prediction based on the LSTM-NN will be useful for achieving the intelligent application of 3-RRR PPMs.


Sign in / Sign up

Export Citation Format

Share Document