Experimental investigations of single particle and particle group combustion in a laminar flow reactor using simultaneous volumetric OH-LIF imaging and diffuse backlight-illumination

2021 ◽  
Vol 136 ◽  
pp. 110377 ◽  
Author(s):  
Tao Li ◽  
Martin Schiemann ◽  
Jan Köser ◽  
Andreas Dreizler ◽  
Benjamin Böhm
2020 ◽  
Author(s):  
Andrew T. Lambe ◽  
Ezra C. Wood ◽  
Jordan E. Krechmer ◽  
Francesca Majluf ◽  
Leah R. Williams ◽  
...  

Abstract. Oxidation flow reactors (OFRs) are an emerging tool for studying the formation and oxidative aging of organic aerosols and other applications. The majority of OFR studies to date involved generation of the hydroxyl radical (OH) to mimic daytime oxidative aging processes. On the other hand, use of the nitrate radical (NO3) in modern OFRs to mimic nighttime oxidative aging processes has been limited due to the complexity of conventional techniques that are used to generate NO3. Here, we present a new method that uses a laminar flow reactor (LFR) to continuously generate dinitrogen pentoxide (N2O5) in the gas phase at room temperature from the NO2 + O3 and NO2 + NO3 reactions. The N2O5 is then injected into a dark Potential Aerosol Mass OFR and decomposes to generate NO3; hereafter, this method is referred to as OFR-iN2O5 (i = injected). To assess the applicability of the OFR-iN2O5 method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure, NO3:O3, NO2:NO3, and NO2:O2 as a function of LFR and OFR conditions. These parameters were used to investigate the fate of representative organic peroxy radicals (RO2) and aromatic alkyl radicals generated from volatile organic compound (VOC) + NO3 reactions, and VOCs that are reactive towards both O3 and NO3. Finally, we demonstrate the OFR-iN2O5 method by generating and characterizing secondary organic aerosol from the β-pinene + NO3 reaction.


2010 ◽  
Vol 24 (12) ◽  
pp. 2567-2575 ◽  
Author(s):  
Jae-Dong Kim ◽  
Gyu-Bo Kim ◽  
Young-June Chang ◽  
Ju-Hun Song ◽  
Chung-Hwan Jeon

Author(s):  
Hendrik Nicolai ◽  
Tao Li ◽  
Christopher Geschwindner ◽  
Francesca di Mare ◽  
Christian Hasse ◽  
...  

2020 ◽  
Author(s):  
Anwer Faraj ◽  
Itimad D J Azzawi ◽  
Samir Ghazi Yahya ◽  
Amer Al-damook

Abstract Experimental investigations of the flows inside helically coiled pipe are difficult and may also be expensive, particularly for small diameters. Computational fluid dynamics (CFD) packages, which can easily construct the geometry and change the dimensions with 100% of accuracy, provide an alternative solution for the experimental difficulties and uncertainties. Therefore, a computational fluid dynamics (CFD) study was conducted to analyse the flow structure and the effect of varying the coil pitch on the coil friction factor, through utilising different models' configurations. Two coils were tested, all of them sharing the same pipe and coil diameter: 0.005m and 0.04m respectively. Pitch variations began with 0.01 and 0.05 m for the first, second model respectively. In this study, the velocity was analysed, and the effects of this reduction on coil friction factor were also examined using laminar flow. The results were validated by Ito's equation for the laminar flow.


2019 ◽  
Vol 12 (8) ◽  
pp. 4519-4541 ◽  
Author(s):  
Kelly L. Pereira ◽  
Grazia Rovelli ◽  
Young C. Song ◽  
Alfred W. Mayhew ◽  
Jonathan P. Reid ◽  
...  

Abstract. Gas-particle equilibrium partitioning is a fundamental concept used to describe the growth and loss of secondary organic aerosol (SOA). However, recent literature has suggested that gas-particle partitioning may be kinetically limited, preventing volatilization from the aerosol phase as a result of the physical state of the aerosol (e.g. glassy, viscous). Experimental measurements of diffusion constants within viscous aerosol are limited and do not represent the complex chemical composition observed in SOA (i.e. multicomponent mixtures). Motivated by the need to address fundamental questions regarding the effect of the physical state and chemical composition of a particle on gas-particle partitioning, we present the design and operation of a newly built 0.3 m3 continuous-flow reactor (CFR), which can be used as a tool to gain considerable insights into the composition and physical state of SOA. The CFR was used to generate SOA from the photo-oxidation of α-pinene, limonene, β-caryophyllene and toluene under different experimental conditions (i.e. relative humidity, VOC and VOC∕NOx ratios). Up to 102 mg of SOA mass was collected per experiment, allowing the use of highly accurate compositional- and single-particle analysis techniques, which are not usually accessible due to the large quantity of organic aerosol mass required for analysis. A suite of offline analytical techniques was used to determine the chemical composition and physical state of the generated SOA, including attenuated total reflectance infrared spectroscopy; carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis; 1H and 1H-13C nuclear magnetic resonance spectroscopy (NMR); ultra-performance liquid chromatography ultra-high-resolution mass spectrometry (UHRMS); high-performance liquid chromatography ion-trap mass spectrometry (HPLC-ITMS); and an electrodynamic balance (EDB). The oxygen-to-carbon (O∕C) and hydrogen-to-carbon (H∕C) ratios of generated SOA samples (determined using a CHNS elemental analyser) displayed good agreement with literature values and were consistent with the characteristic Van Krevelen diagram trajectory, with an observed slope of −0.41. The elemental composition of two SOA samples formed in separate replicate experiments displayed excellent reproducibility, with the O∕C and H∕C ratios of the SOA samples observed to be within error of the analytical instrumentation (instrument accuracy ±0.15 % to a reference standard). The ability to use a highly accurate CHNS elemental analyser to determine the elemental composition of the SOA samples allowed us to evaluate the accuracy of reported SOA elemental compositions using UHRMS (a commonly used technique). In all of the experiments investigated, the SOA O∕C ratios obtained for each SOA sample using UHRMS were lower than the O∕C ratios obtained from the CHNS analyser (the more accurate and non-selective technique). The average difference in the ΔO∕C ratios ranged from 19 % to 45 % depending on the SOA precursor and formation conditions. α-pinene SOA standards were generated from the collected SOA mass using semi-preparative HPLC-ITMS coupled to an automated fraction collector, followed by 1H NMR spectroscopy. Up to 35.8±1.6 % (propagated error of the uncertainty in the slope of the calibrations graphs) of α-pinene SOA was quantified using this method; a considerable improvement from most previous studies. Single aerosol droplets were generated from the collected SOA samples and trapped within an EDB at different temperatures and relative humidities to investigate the dynamic changes in their physiochemical properties. The volatilization of organic components from toluene and β-caryophyllene SOA particles at 0 % relative humidity was found to be kinetically limited, owing to particle viscosity. The unconventional use of a newly built CFR, combined with comprehensive offline chemical characterization and single-particle measurements, offers a unique approach to further our understanding of the relationship between SOA formation conditions, chemical composition and physiochemical properties.


Sign in / Sign up

Export Citation Format

Share Document