Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production

2021 ◽  
Vol 149 ◽  
pp. 111323
Author(s):  
S.Kagan Ayaz ◽  
Onder Altuntas ◽  
Hakan Caliskan
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3463
Author(s):  
Xueliang Yuan ◽  
Leping Chen ◽  
Xuerou Sheng ◽  
Mengyue Liu ◽  
Yue Xu ◽  
...  

Economic cost is decisive for the development of different power generation. Life cycle cost (LCC) is a useful tool in calculating the cost at all life stages of electricity generation. This study improves the levelized cost of electricity (LCOE) model as the LCC calculation methods from three aspects, including considering the quantification of external cost, expanding the compositions of internal cost, and discounting power generation. The improved LCOE model is applied to three representative kinds of power generation, namely, coal-fired, biomass, and wind power in China, in the base year 2015. The external cost is quantified based on the ReCiPe model and an economic value conversion factor system. Results show that the internal cost of coal-fired, biomass, and wind power are 0.049, 0.098, and 0.081 USD/kWh, separately. With the quantification of external cost, the LCCs of the three are 0.275, 0.249, and 0.081 USD/kWh, respectively. Sensitivity analysis is conducted on the discount rate and five cost factors, namely, the capital cost, raw material cost, operational and maintenance cost (O&M cost), other annual costs, and external costs. The results provide a quantitative reference for decision makings of electricity production and consumption.


2020 ◽  
Author(s):  
Francesco Rovense ◽  
Miguel Ángel Reyes-Belmonte ◽  
Manuel Romero ◽  
José González-Aguilar

2019 ◽  
Vol 11 (5) ◽  
pp. 1370 ◽  
Author(s):  
Shutaro Takeda ◽  
Alexander Keeley ◽  
Shigeki Sakurai ◽  
Shunsuke Managi ◽  
Catherine Norris

The adoption of renewable energy technologies in developing nations is recognized to have positive environmental impacts; however, what are their effects on the electricity supply chain workers? This article provides a quantitative analysis on this question through a relatively new framework called social life cycle assessment, taking Malaysia as a case example. Impact assessments by the authors show that electricity from renewables has greater adverse impacts on supply chain workers than the conventional electricity mix: Electricity production with biomass requires 127% longer labor hours per unit-electricity under the risk of human rights violations, while the solar photovoltaic requires 95% longer labor hours per unit-electricity. However, our assessment also indicates that renewables have less impacts per dollar-spent. In fact, the impact of solar photovoltaic would be 60% less than the conventional mix when it attains grid parity. The answer of “are renewables as friendly to humans as to the environment?” is “not-yet, but eventually.”


2008 ◽  
Vol 3 (1) ◽  
pp. 204-215
Author(s):  
Kousaku YOTORIYAMA ◽  
Shunsuke AMANO ◽  
Hidetomo FUJIWARA ◽  
Tomohiko FURUHATA ◽  
Masataka ARAI

2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shijie Guo

This paper demonstrates the investigations on the blade vibration of a radial inflow micro gas turbine wheel. Firstly, the dependence of Young's modulus on temperature was measured since it is a major concern in structure analysis. It is demonstrated that Young's modulus depends on temperature greatly and the dependence should be considered in vibration analysis, but the temperature gradient from the leading edge to the trailing edge of a blade can be ignored by applying the mean temperature. Secondly, turbine blades suffer many excitations during operation, such as pressure fluctuations (unsteady aerodynamic forces), torque fluctuations, and so forth. Meanwhile, they have many kinds of vibration modes, typical ones being blade-hub (disk) coupled modes and blade-shaft (torsional, longitudinal) coupled modes. Model experiments and FEM analysis were conducted to study the coupled vibrations and to identify the modes which are more likely to be excited. The results show that torque fluctuations and uniform pressure fluctuations are more likely to excite resonance of blade-shaft (torsional, longitudinal) coupled modes. Impact excitations and propagating pressure fluctuations are more likely to excite blade-hub (disk) coupled modes.


2017 ◽  
Vol 142 ◽  
pp. 297-302 ◽  
Author(s):  
Marco Buffi ◽  
Alessandro Cappelletti ◽  
Tine Seljak ◽  
Tomaž Katrašnik ◽  
Agustin Valera-Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document