Proximity effects of natural and artificial reef walls on fish assemblages

2017 ◽  
Vol 9 ◽  
pp. 17-23 ◽  
Author(s):  
Tom R. Davis ◽  
Stephen D.A. Smith
2019 ◽  
Vol 95 (4) ◽  
pp. 639-656 ◽  
Author(s):  
Erin L Meyer-Gutbrod ◽  
Li Kui ◽  
Mary M Nishimoto ◽  
Milton S Love ◽  
Donna M Schroeder ◽  
...  

There are thousands of offshore oil and gas platforms worldwide that will eventually become obsolete, and one popular decommissioning alternative is the "rigs to reefs" conversion that designates all or a portion of the underwater infrastructure as an artificial reef, thereby reducing the burden of infrastructure removal. The unique architecture of each platform may influence the size and structure of the associated fish assemblage if different structural elements form distinct habitats for fishes. Using scuba survey data from 11 southern California platforms from 1995 to 2000, we examined fish assemblages associated with structural elements of the structure, including the major horizontal crossbeams outside of the jacket, vertical jacket legs, and horizontal crossbeams that span the jacket interior. Patterns of habitat association were examined among three depth zones: shallow (<16.8 m), midwater (16.8–26 m), and deep (>26 m); and between two life stages: young- of-the-year and non-young-of-the-year. Fish densities tended to be greatest along horizontal beams spanning the jacket interior, relative to either horizontal or vertical beams along the jacket exterior, indicating that the position of the habitat within the overall structure is an important characteristic affecting fish habitat use. Fish densities were also higher in transects centered directly over a vertical or horizontal beam relative to transects that did not contain a structural element. These results contribute to the understanding of fish habitat use on existing artificial reefs, and can inform platform decommissioning decisions as well as the design of new offshore structures intended to increase fish production.


2005 ◽  
Vol 56 (2) ◽  
pp. 133 ◽  
Author(s):  
Rhys A. Edwards ◽  
Stephen D. A. Smith

In marine habitats, the use of geotextile materials as a ‘soft-engineering’ solution is increasingly being considered as an alternative to hard structures. However, very little is known about biological assemblages that develop on geotextile structures. This study provides the first ecological comparison of subtidal assemblages between Narrowneck Artificial Reef (NAR), a geotextile reef in south-east Queensland, Australia, and three nearby natural reefs. Benthic community structure, fish assemblages and habitat complexity were compared between reef types using an asymmetrical design. Although natural reefs supported distinct biotic assemblages, as a class, these reefs differed significantly from NAR. The artificial reef was dominated by macroalgae and supported fewer benthic categories, whereas the natural reefs were characterised by a diverse range of sessile invertebrates. Benthic and demersal fish assemblages were less diverse on NAR, but pelagic fish assemblages were similar on both reef types. The substratum of NAR was less complex than that of the natural reefs; this physical variable was correlated with some of the differences in benthic communities and benthic and demersal fish assemblages. It is likely that the key determinants of the biotic patterns observed in this study are interactions between the age of NAR and the physical properties of geotextile substratum.


2020 ◽  
pp. 100021
Author(s):  
Alwin Hylkema ◽  
Adolphe O. Debrot ◽  
Ronald Osinga ◽  
Patrick S. Bron ◽  
Daniel B. Heesink ◽  
...  

<em>Abstract</em>.—Reef-fish assemblage structure was compared among multiple artificial and geologic (i.e., naturally occurring hard bottom) habitats in the northeastern Gulf of Mexico during 2014–2016 as part of a larger fishery-independent survey. Baited remote underwater video systems equipped with stereo cameras were deployed (<em>n </em>= 348) on 11 habitat types, classified through interpretation of side-scan sonar imagery. In the video samples, 11,801 fish were enumerated. Nonparametric analysis of reef-fish assemblages detected four clusters related to habitat; assemblages associated with geologic habitats were distinct, whereas the remaining three clusters represented groupings of artificial habitats of different size, scale, and complexity. While many species, including Vermilion Snapper <em>Rhomboplites aurorubens </em>and Red Snapper <em>Lutjanus campechanus</em>, were observed in greater numbers on artificial reef habitats, most species were observed in all habitats sampled. Among artificial reef habitats, the habitat cluster consisting of unidentified depressions, unidentified artificial reefs, construction materials, and reef modules was similar to geologic habitats in supporting larger individuals, specifically Gray Triggerfish <em>Balistes capriscus </em>and Red Snapper. In contrast, the habitat cluster consisting of smaller, generally solitary chicken-transport cages was inhabited by smaller individuals, including smaller Red Snapper. Although geologic reefs are the predominant reef habitat throughout much of the eastern Gulf, artificial reefs are important locally, especially in the Florida Panhandle. Accordingly, continued incorporation of artificial reef habitats within large-scale fishery-independent monitoring efforts is critical to the accurate assessment of the status of reef-fish stocks on broad spatial scales.


2017 ◽  
Vol 68 (10) ◽  
pp. 1955 ◽  
Author(s):  
James A. Smith ◽  
William K. Cornwell ◽  
Michael B. Lowry ◽  
Iain M. Suthers

Artificial reefs are a widely used tool aimed at fishery enhancement, and measuring the scale at which fish assemblages associate with these artificial habitat patches can aid reef design and spatial arrangement. The present study used rapidly deployed underwater video (drop cameras) to determine the magnitude and spatial scale of associations between a fish assemblage and a coastal artificial reef. Count data from drop cameras were combined with distance and bathymetry information to create a suite of explanatory generalised linear mixed models (GLMMs). The GLMMs showed that artificial reefs can influence surrounding fish abundance, but that the magnitude and scale is species specific. Three of the eight taxonomic groups examined showed a positive association with the artificial reef (with model fit poor for the remaining groups); and depth and bottom cover were also influential variables. The spatial scales of these associations with the artificial reef were small, and it was generally the presence of reef (i.e. a reef bottom type) that explained more variation in fish abundance than did distance to reef. The schooling baitfish yellowtail scad was an exception, and had elevated abundance >50m from the artificial reef. Further distribution modelling of artificial reefs will benefit species-specific design and management of artificial reefs.


1996 ◽  
Vol 46 (4) ◽  
pp. 351-364 ◽  
Author(s):  
Toshihiko Fujita ◽  
Daiji Kitagawa ◽  
Yusaku Okuyama ◽  
Yasutoshi Jin ◽  
Yoshio Ishito ◽  
...  

Author(s):  
Diogo Fonseca Da Rocha ◽  
Marcos Alberto Lima Franco ◽  
Pedro Vianna Gatts ◽  
Ilana Rosental Zalmon

Artificial reefs (ARs) are often used to improve fishing and, consequently, the economy of a region. However, the way in which the species use the reefs may vary between fish assemblages. An assessment was made of the influence of an AR complex on the transient fish population off the northern coast of Rio de Janeiro state and, therefore, two control areas were sampled. Gillnets were used to capture individual fish in six sampling surveys. Cumulative abundance and biomass curves (ABC) were used to assess the possible effects of the reefs on the community's functional structure. In the dry season, during which the influence of the Paraíba do Sul River is smaller, a larger richness of r-strategy species and juveniles of K-strategy species was observed in the reef area compared with the control areas, suggesting that the AR acts as a protective environment for these species. During the lower river discharge period the results indicated a potential disturbance in the functional structure of the AR fish community and, therefore, a less stable environment relative to the control areas. This ‘instability’ warrants a positive connotation, as it indicates that the artificial reefs are harbouring species that are particularly sensitive to predation, making the reef a powerful tool for maintaining these populations on the northern coast of Rio de Janeiro.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 50
Author(s):  
Ronald Baker ◽  
Dakota Bilbrey ◽  
Aaron Bland ◽  
Frank D’Alonzo ◽  
Hannah Ehrmann ◽  
...  

Habitat loss is a serious issue threatening biodiversity across the planet, including coastal habitats that support important fish populations. Many coastal areas have been extensively modified by the construction of infrastructure such as ports, seawalls, docks, and armored shorelines. In addition, habitat restoration and enhancement projects often include constructed breakwaters or reefs. Such infrastructure may have incidental or intended habitat values for fish, yet their physical complexity makes quantitatively sampling these habitats with traditional gears challenging. We used a fleet of unbaited underwater video cameras to quantify fish communities across a variety of constructed and natural habitats in Perdido and Pensacola Bays in the central northern Gulf of Mexico. Between 2019 and 2021, we collected almost 350 replicate 10 min point census videos from rock jetty, seawall, commercial, public, and private docks, artificial reef, restored oyster reef, seagrass, and shallow sandy habitats. We extracted standard metrics of Frequency of Occurrence and MaxN, as well as more recently developed MeanCount for each taxon observed. Using a simple method to measure the visibility range at each sampling site, we calculated the area of the field of view to convert MeanCount to density estimates. Our data revealed abundant fish assemblages on constructed habitats, dominated by important fisheries species, including grey snapper Lutjanus griseus and sheepshead Archosargus probatocephalus. Our analyses suggest that density estimates may be obtained for larger fisheries species under suitable conditions. Although video is limited in more turbid estuarine areas, where conditions allow, it offers a tool to quantify fish communities in structurally complex habitats inaccessible to other quantitative gears.


Sign in / Sign up

Export Citation Format

Share Document