Spectroscopic and structural investigation of interaction product of 8-mercaptoquinoline with molecular iodine

Author(s):  
Margarita S. Chernov’yants ◽  
Zoya A. Starikova ◽  
Anastasia O. Karginova ◽  
Tatiana S. Kolesnikova ◽  
Alexander Yu. Tereznikov
2013 ◽  
Vol 1047 ◽  
pp. 204-208 ◽  
Author(s):  
Margarita S. Chernov’yants ◽  
Igor V. Burykin ◽  
Zoya A. Starikova ◽  
Alexander Yu. Tereznikov ◽  
Tatiana S. Kolesnikova

2019 ◽  
Vol 195 (5) ◽  
pp. 421-428
Author(s):  
Victoria A. Ivolgina ◽  
Margarita S. Chernov’yants ◽  
Leonid D. Popov ◽  
Vitaliy V. Suslonov ◽  
Natalya A. Avtushenko ◽  
...  

Author(s):  
Alfred Baltz

As part of a program to develop iron particles for next generation recording disk medium, their structural properties were investigated using transmission electron microscopy and electron diffraction. Iron particles are a more desirable recording medium than iron oxide, the most widely used material in disk manufacturing, because they offer a higher magnetic output and a higher coercive force. The particles were prepared by a method described elsewhere. Because of their strong magnetic interaction, a method had to be developed to separate the particles on the electron microscope grids.


1991 ◽  
Vol 30 (06) ◽  
pp. 290-293 ◽  
Author(s):  
P. Maleki ◽  
A. Martinezi ◽  
M. C. Crone-Escanye ◽  
J. Robert ◽  
L. J. Anghileri

The study of the interaction between complexed iron and tumor cells in the presence of 67Ga-citrate indicates that a phenomenon of iron-binding related to the thermodynamic constant of stability of the iron complex, and a hydrolysis (or anion penetration) of the interaction product determine the uptake of 67Ga. The effects of various parameters such as ionic composition of the medium, nature of the iron complex, time of incubation and number of cells are discussed.


1970 ◽  
Vol 24 (03/04) ◽  
pp. 325-333 ◽  
Author(s):  
G. H Tishkoff ◽  
L. C Williams ◽  
D. M Brown

SummaryAs a corollary to our previous studies with bovine prothrombin, we have initiated a study of human prothrombin complex. This product has been isolated in crystalline form as a barium glycoprotein interaction product. Product yields were reduced compared to bovine product due to the increased solubility of the barium glycoprotein interaction product. On occasion the crystalline complex exhibited good yields. The specific activity of the crystalline complex was 1851 Iowa u/mg. Further purification of human prothrombin complex was made by removal of barium and by chromatography on Sephadex G-100 gels. The final product evidenced multiple procoagulant activities (II, VII, IX and X). The monomeric molecular weight determined by sedimentation equilibrium in a solvent of 6 M guanidine-HCl and 0.5% mercaptoethanol was 70,191 ± 3,057 and was homogeneous with respect to molecular weight. This product was characterized in regard to physical constants and chemical composition. In general, the molecular properties of human prothrombin complex are very similar to the comparable bovine product. In some preparations a reversible proteolytic enzyme inhibitor (p-aminophenylarsonic acid) was employed in the ultrafiltration step of the purification scheme to inhibit protein degradation.


2020 ◽  
Vol 27 (12) ◽  
pp. 699-710
Author(s):  
Irasema Mendieta ◽  
Gabriel Rodríguez-Gómez ◽  
Bertha Rueda-Zarazúa ◽  
Julia Rodríguez-Castelán ◽  
Winniberg Álvarez-León ◽  
...  

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 μM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 μM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.


2017 ◽  
Vol 62 (2) ◽  
pp. 19-28
Author(s):  
Onuc Cozar ◽  
◽  
Nicolae Cioica ◽  
Elena Mihaela Nagy ◽  
Constantin Coţa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document