Effects of reverse genetic mutations on the spectral and photochemical behavior of a photoactivatable fluorescent protein PAiRFP1

Author(s):  
Fakhrul Hassan ◽  
Faez Iqbal Khan ◽  
Honghong Song ◽  
Dakun Lai ◽  
Feng Juan
2009 ◽  
Vol 37 (4) ◽  
pp. 830-837 ◽  
Author(s):  
Jane S. Martin ◽  
Stephen A. Renshaw

Neutrophilic inflammation in the lung protects against infectious disease, and usually resolves spontaneously after removal of the inflammatory stimulus. However, much lung disease is caused by a failure of resolution of neutrophilic inflammation. Our laboratory is seeking an understanding of the biochemical basis of inflammation resolution, using the zebrafish model system. Zebrafish larvae are transparent, allowing visualization of GFP (green fluorescent protein)-labelled leucocytes during inflammation in vivo, and they can be readily manipulated by a range of forward and reverse genetic techniques. This combination of advantages makes zebrafish a powerful tool for the study of in vivo inflammatory processes. Using this model, we have visualized the process of inflammation resolution in vivo, and identified a role for apoptosis in this process. In addition, we have performed a forward genetic screen for mutants with defective resolution of inflammation, and reverse genetic experiments examining the influence of candidate genes on inflammation resolution. We have established a platform for screening for compounds with anti-inflammatory activity, which has yielded a number of interesting leads. Looking forward to succeed in the future, we are working at combining mutants, transgenes and pharmacological agents to dissect the biochemical basis of inflammation resolution, and to identify compounds that might be used to treat patients with respiratory disease.


2007 ◽  
Vol 82 (4) ◽  
pp. 1851-1859 ◽  
Author(s):  
Gergely Tekes ◽  
Regina Hofmann-Lehmann ◽  
Iris Stallkamp ◽  
Volker Thiel ◽  
Heinz-Jürgen Thiel

ABSTRACT In this study we report the complete sequence and genome organization of the serotype I feline coronavirus (FCoV) strain Black. Furthermore, a reverse genetic system was established for this FCoV strain by cloning a full-length cDNA copy into vaccinia virus. This clone served as basis for the generation of recombinant FCoV (recFCoV) that was shown to bear the same features in vitro as the parental FCoV. Using this system, accessory 3abc genes in the FCoV genome were replaced by green fluorescent protein (recFCoV-GFP) and Renilla luciferase genes (recFCoV-RL). In addition, we showed that feline CD14+ blood monocytes and dendritic cells can be easily detected after infection with recFCoV-GFP. Thus, our established reverse genetic system provides a suitable tool to study the molecular biology of serotype I FCoV.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinping Yu ◽  
Feng Shi ◽  
Haiyan Liu ◽  
Shuyu Tan ◽  
Yongfu Li

Abstract4-Hydroxyisoleucine (4-HIL) is a promising drug for treating diabetes. In our previous study, 4-HIL was synthesized from self-produced L-isoleucine (Ile) in Corynebacterium glutamicum by expressing an Ile dioxygenase gene. Although the 4-HIL production of recombinant strain SZ06 increased significantly, a by-product, L-lysine (Lys) was accumulated because of the share of the first several enzymes in Ile and Lys biosynthetic pathways. In this study, programming adaptive laboratory evolution (ALE) was designed and conducted in SZ06 to promote 4-HIL biosynthesis. At first, a programming evolutionary system pMK was constructed, which contains a Lys biosensor LysG-PlysE and an evolutionary actuator composed of a mutagenesis gene and a fluorescent protein gene. The evolutionary strain SZ06/pMK was then let to be evolved programmatically and spontaneously by sensing Lys concentration. After successive rounds of evolution, nine mutant strains K1 − K9 with significantly increased 4-HIL production and growth performance were obtained. The maximum 4-HIL titer was 152.19 ± 14.60 mM, 28.4% higher than that in SZ06. This titer was higher than those of all the metabolic engineered C. glutamicum strains ever constructed. The whole genome sequencing of the nine evolved strains revealed approximately 30 genetic mutations in each strain. Only one mutation was directly related to the Lys biosynthetic pathway. Therefore, programming ALE driven by Lys biosensor can be used as an effective strategy to increase 4-HIL production in C. glutamicum.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2019 ◽  
Author(s):  
Samantha Anandappa ◽  
Louise Breen ◽  
Ramesh Thurairaja ◽  
Dimitra Christodoulou ◽  
Audrey Jacques ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document