Genetic mutations behind cardiomyopathy

Nature India ◽  
2014 ◽  
Keyword(s):  
2019 ◽  
Author(s):  
Samantha Anandappa ◽  
Louise Breen ◽  
Ramesh Thurairaja ◽  
Dimitra Christodoulou ◽  
Audrey Jacques ◽  
...  

Author(s):  
Krishna Prasad Lamichhane ◽  
Shaili Pradhan ◽  
Ranjita Shreshta Gorkhali ◽  
Pramod Kumar Koirala

Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive disorder associated with rapidly progressing periodontitis leading to premature loss of deciduous and permanent dentition and diffuse palmoplantar keratosis. Immunologic alterations, genetic mutations, and role of bacteria are some aetiologic factors. Patients present with early periodontal destruction, so periodontists play a significant role in diagnosis and management. This paper reports a case of Papillon- Lefevre syndrome with its clinical manifestations and challenges for periodontal management which was diagnosed in dental department.


2012 ◽  
Vol 14 (3) ◽  
pp. 239-252

In this review, we outline critical molecular processes that have been implicated by discovery of genetic mutations in autism. These mechanisms need to be mapped onto the neurodevelopment step(s) gone awry that may be associated with cause in autism. Molecular mechanisms include: (i) regulation of gene expression; (ii) pre-mRNA splicing; (iii) protein localization, translation, and turnover; (iv) synaptic transmission; (v) cell signaling; (vi) the functions of cytoskeletal and scaffolding proteins; and (vii) the function of neuronal cell adhesion molecules. While the molecular mechanisms appear broad, they may converge on only one of a few steps during neurodevelopment that perturbs the structure, function, and/or plasticity of neuronal circuitry. While there are many genetic mutations involved, novel treatments may need to target only one of few developmental mechanisms.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Melissa Chalada ◽  
Charmaine A. Ramlogan-Steel ◽  
Bijay P. Dhungel ◽  
Christopher J. Layton ◽  
Jason C. Steel

Uveal melanoma (UM) is currently classified by the World Health Organisation as a melanoma caused by risk factors other than cumulative solar damage. However, factors relating to ultraviolet radiation (UVR) susceptibility such as light-coloured skin and eyes, propensity to burn, and proximity to the equator, frequently correlate with higher risk of UM. These risk factors echo those of the far more common cutaneous melanoma (CM), which is widely accepted to be caused by excessive UVR exposure, suggesting a role of UVR in the development and progression of a proportion of UM. Indeed, this could mean that countries, such as Australia, with high UVR exposure and the highest incidences of CM would represent a similarly high incidence of UM if UVR exposure is truly involved. Most cases of UM lack the typical genetic mutations that are related to UVR damage, although recent evidence in a small minority of cases has shown otherwise. This review therefore reassesses statistical, environmental, anatomical, and physiological evidence for and against the role of UVR in the aetiology of UM.


2021 ◽  
Vol 14 ◽  
pp. 175628482110244
Author(s):  
Muhammad Wasif M. Saif ◽  
Ruchi Hamal ◽  
Nauman Siddiqui ◽  
Antonia Maloney ◽  
Melissa Smith

Background: 5-fluorouracil (5-FU) and mitomycin-C (MMC) with radiotherapy (RT) remain an established treatment for patients with anal cancer (AC). Genetic mutations in two major metabolizing enzymes for 5-FU; dihydropyrimidine dehydrogenase ( DPYD and thymidylate synthetase ( TYMS), have been associated with clinical response and toxicity. However, their place in the treatment of AC remains undetermined. Methods: We retrospectively reviewed 21 patients with AC, including T2-4, N0-1, M0 or T1-4, N2-3, and M0 treated between 2012 and 2018. All patients were treated with 5-FU 1,000 mg/m2/day via continuous intravenous (IV) infusion 1–4 and 29–32, MMC 10 mg/m2 IV bolus days 1 and 29 plus RT. Patients who developed ⩾3 grade toxicities were tested for the DPYD and TYMS genes. Treatment was either modified with reduced doses or changed to MMC 10 mg/m2 day 1 and 29 with cisplatin 25 mg/m2/week plus RT. Toxicities and responses were collected. Results: Six out of 21 patients who developed ⩾3 grade toxicities including pancytopenia, neutropenia, thrombocytopenia, mucositis, nausea, rash, and nephritis were found to have genetic mutations: TYMS 2RG/3RC ( n = 2), 3RG/3RC ( n = 1), 2R/2R ( n = 2), T YMS 3′UTR del/Ins ( n = 2), and DPYD c.2864A > T heterozygous ( n = 1). Two patients received 5-FU at a 50% reduced dose on days 29–32; one patient refused to receive 5-FU (continued with MMC and RT); one patient received only radiation therapy due to persistent pancytopenia despite the use of growth factors; two patients received an alternative regimen consisting of MMC 10 mg/m2 on day 29 with cisplatin (CDDP) 25 mg/m2/week plus RT; and two patients received cisplatin/MMC with RT from the beginning as they were prospectively detected to have TYMS abnormalities prior to dosing the chemotherapy. These patients tolerated treatment very well with only grade 2 toxicities. All the patients (4/4) on cisplatin/MMC achieved clinical complete response (cCR), while four patients (4/15) on 5-FU/MMC reached cCR at the first assessment. Radiological response showed complete response at the end of 24 weeks assessment. Conclusions: Molecular testing for DPYD and TYMS genes can allow us to identify patients who are most likely to respond or face severe toxicity to 5-FU in a potentially curable cancer. Combining radiation with CDDP with MMC in patients with AC is feasible. A prospective study based on pharmacogenetic testing comparing MMC/cisplatin with MMC/5-FU is indicated in patients with AC.


Sign in / Sign up

Export Citation Format

Share Document