Crossing of the hu line by neolithic population in response to seesaw precipitation changes in china

2021 ◽  
Author(s):  
Jianping Zhang ◽  
Xiujia Huan ◽  
Houyuan Lu ◽  
Can Wang ◽  
Caiming Shen ◽  
...  
2021 ◽  
Vol 255 ◽  
pp. 106819 ◽  
Author(s):  
Can Zhang ◽  
Cheng Zhao ◽  
Aifeng Zhou ◽  
Haixia Zhang ◽  
Weiguo Liu ◽  
...  

2021 ◽  
Vol 7 (6) ◽  
pp. eabb7118
Author(s):  
E. Harris ◽  
E. Diaz-Pines ◽  
E. Stoll ◽  
M. Schloter ◽  
S. Schulz ◽  
...  

Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade.


2021 ◽  
Vol 10 (3) ◽  
pp. 129
Author(s):  
Vincent Nzabarinda ◽  
Anming Bao ◽  
Wenqiang Xu ◽  
Solange Uwamahoro ◽  
Madeleine Udahogora ◽  
...  

Vegetation is vital, and its greening depends on access to water. Thus, precipitation has a considerable influence on the health and condition of vegetation and its amount and timing depend on the climatic zone. Therefore, it is extremely important to monitor the state of vegetation according to the movements of precipitation in climatic zones. Although a lot of research has been conducted, most of it has not paid much attention to climatic zones in the study of plant health and precipitation. Thus, this paper aims to study the plant health in five African climatic zones. The linear regression model, the persistence index (PI), and the Pearson correlation coefficients were applied for the third generation Normalized Difference Vegetation Index (NDVI3g), with Climate Hazard Group infrared precipitation and Climate Change Initiative Land Cover for 34 years (1982 to 2015). This involves identifying plants in danger of extinction or in dramatic decline and the relationship between vegetation and rainfall by climate zone. The forest type classified as tree cover, broadleaved, deciduous, closed to open (>15%) has been degraded to 74% of its initial total area. The results also revealed that, during the study period, the vegetation of the tropical, polar, and warm temperate zones showed a higher rate of strong improvement. Although arid and boreal zones show a low rate of strong improvement, they are those that experience a low percentage of strong degradation. The continental vegetation is drastically decreasing, especially forests, and in areas with low vegetation, compared to more vegetated areas, there is more emphasis on the conservation of existing plants. The variability in precipitation is excessively hard to tolerate for more types of vegetation.


2016 ◽  
Vol 36 (15) ◽  
pp. 4697-4704 ◽  
Author(s):  
Lei Fan ◽  
Sang-Ik Shin ◽  
Zhengyu Liu ◽  
Qinyu Liu

2007 ◽  
Vol 34 (23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xianfeng Wang ◽  
Augusto S. Auler ◽  
R. L. Edwards ◽  
Hai Cheng ◽  
Emi Ito ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362098805
Author(s):  
Asmae Baqloul ◽  
Enno Schefuß ◽  
Martin Kölling ◽  
Lydie Dupont ◽  
Jeroen Groeneveld ◽  
...  

The southwest of Morocco is considered to be an area of refuge within the Mediterranean region, hosting the endemic tropical Argan tree. This region is presently subject to severe droughts, desertification and land degradation, and likely facing increased climate variability and socio-economic stress in the future. Here, we use the stable hydrogen and carbon isotope composition (δD and δ13C) of plant-waxes in a high-resolution marine sediment core (GeoB8601-3) collected off Cape Ghir in southwestern Morocco, in combination with published data on pollen and XRF element ratios from the same archive. We aim to reconstruct the hydroclimate and vegetation history during the last 3000 years. Stable carbon isotope compositions of leaf waxes (δ13Cwax) show that natural vegetation in southwestern Morocco consists of C3 plants. Minor variations in δ13Cwax were positively correlated to changes in stable hydrogen isotope compositions of leaf waxes (δDwax) before 700 CE. Changes in rainfall amounts and water use efficiency indicate a clear vegetation response to precipitation changes and thus to climate forcing. After 700 CE, δDwax and δ13Cwax became de-coupled suggesting that the plant wax discharge and their isotope signals were no longer solely controlled by climate; the waxes likely mainly originate from the lowlands and carry an enriched (dry) δD signal but a depleted 13C signature. The depletion of δ13Cwax correlates with the increase of Argan pollen concentration in the record. The period between ~700 and 900 CE coincides with the Arabization of Morocco which had an impact on the demographic composition of the country leading to new agricultural habits and, as a result, on the land-use triggering a higher erosion of lowland material by the Souss River.


Sign in / Sign up

Export Citation Format

Share Document