scholarly journals Millennial-scale precipitation changes in southern Brazil over the past 90,000 years

2007 ◽  
Vol 34 (23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xianfeng Wang ◽  
Augusto S. Auler ◽  
R. L. Edwards ◽  
Hai Cheng ◽  
Emi Ito ◽  
...  
2021 ◽  
Vol 7 (6) ◽  
pp. eabb7118
Author(s):  
E. Harris ◽  
E. Diaz-Pines ◽  
E. Stoll ◽  
M. Schloter ◽  
S. Schulz ◽  
...  

Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade.


2017 ◽  
Author(s):  
Pei Hou ◽  
Shiliang Wu ◽  
Jessica L. McCarty

Abstract. Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our study, based on the GEOS-Chem model simulation, shows that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosols lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequency in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the precipitation changes over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.


2019 ◽  
Author(s):  
Lujendra Ojha ◽  
Ken L. Ferrier ◽  
Tank Ojha

Abstract. Over the past two decades, rates and patterns of Himalayan denudation have been documented through numerous cosmogenic nuclide measurements in central and eastern Nepal, Bhutan, and northern India. To date, however, few denudation rates have been measured in Far Western Nepal – a ~ 300-km-wide region near the center of the Himalayan arc – which presents a significant gap in our understanding of Himalayan denudation. Here we report new catchment-averaged millennial-scale denudation rates inferred from cosmogenic 10Be in fluvial quartz at seven sites in Far Western Nepal. The inferred denudation rates range from 385 ± 31 t km−2 yr−1 (0.15 ± 0.01 mm yr −1) to 8737 ± 2908 t km−2 yr−1 (3.3 ± 1.1 mm yr−1), and, in combination with our analyses of channel topography, are broadly consistent with previously published relationships between catchment-averaged denudation rates and normalized channel steepness across the Himalaya. These data show a weak correlation with catchment-averaged specific stream power, consistent with a Himalaya-wide compilation of previously published stream power values. Together, these observations are consistent with a dependence of denudation rate on both tectonic and climatic forcings, and represent a first step toward filling an important gap in denudation rate measurements in Far Western Nepal.


2017 ◽  
Vol 10 (10) ◽  
pp. 760-764 ◽  
Author(s):  
Matthew R. Loveley ◽  
Franco Marcantonio ◽  
Marilyn M. Wisler ◽  
Jennifer E. Hertzberg ◽  
Matthew W. Schmidt ◽  
...  

2017 ◽  
Author(s):  
Bryan N. Shuman ◽  
Cody Routson ◽  
Nicholas McKay ◽  
Sherilyn Fritz ◽  
Darrell Kaufman ◽  
...  

Abstract. A synthesis of 93 hydrologic records from across North and Central America, and adjacent tropical and Arctic islands, reveals centennial to millennial trends in the regional hydroclimates of the Common Era (CE; past 2000 years). The hydrological records derive from materials stored in lakes, bogs, caves, and ice from extant glaciers, which have the continuity through time to preserve low-frequency (> 100 year) climate signals that may not be well represented by other shorter-lived archives, such as tree-ring chronologies. The most common pattern, represented in 46 (49 %) of the records, indicates that the centuries before 1000 CE were drier than the centuries since that time. Principal components analysis indicates that millennial-scale trends represent the dominant pattern of variance in the southwest and northeast U.S., the mid-continent, Pacific Northwest, the Arctic, and the tropics, although not all records within a region show the same direction of change. The Pacific Northwest, Greenland, and the southernmost tier of the tropical sites tended to dry toward present, as many other areas became wetter than before. Twenty-two records (24 %) indicate that the Medieval period (800–1300 CE) was drier than the Little Ice Age (1400–1900 CE), but in many cases the difference was part of the longer millennial-scale trend, and, in 25 records (27 %), the Medieval period represented a pluvial (wet) phase. Where quantitative records permitted a comparison, we found that centennial-scale fluctuations over the Common Era represented changes of 3–7 % of the modern inter-annual range of variability in precipitation, but the accumulation of these long-term trends over the entirety of the Holocene caused recent centuries to be significantly wetter, on average, than most of the past 11 000 years.


2015 ◽  
Vol 18 (2) ◽  
pp. 111-128 ◽  
Author(s):  
Ricardo Cid Fernandes ◽  
Leonel Piovezana

This article discusses aspects of culture-nature relations among indigenous groups in Southern Brazil. Based on the ethnography of Kaingang groups in the state of Santa Catarina, conceptions of culture and nature are considered taking into account the relationship between politics and cosmology. More specifically, this article focuses on the analysis of two different kinds of ethnographic sources, namely: the historical processes of recovery of indigenous lands; and, the references to nature expressed in mythological narratives and ritual processes. Indeed, in the recent history of the Kaingang, the struggle for "indigenous tradition" has triggered scenes and scenarios from the past. These scenarios not only involve inter-ethnic resistance, but also specific notions of nature, culture and environmental recovery. In summary, this article argues that the link between political and cosmological conceptions forms the very basis of the indigenous perspective concerning their territorial and environmental rights.


Sign in / Sign up

Export Citation Format

Share Document