Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa ( Medicago sativa L.) – rhizobia symbiosis under drought stress

2016 ◽  
Vol 213 ◽  
pp. 232-242 ◽  
Author(s):  
Mohammed Mouradi ◽  
Abdelaziz Bouizgaren ◽  
Mohamed Farissi ◽  
Lahbib Latrach ◽  
Ahmed Qaddoury ◽  
...  
2019 ◽  
Vol 47 (3) ◽  
Author(s):  
Vladimir Ion ROTARU ◽  
Luxita RISNOVEANU

The growth of legume plants is usually improved by the rhizobacteria inoculation under low phosphorus (P) and alleviation of P nutrition plays important role in plant drought stress response. The aim of this study was to assess the comparative efficacy of two plant growth promoting rhizobacteria namely Burkholderia cepacia B36 and Enterobacter radicincitans D5/23T combined with two sources of phosphates in soybean (Glycine max L.) under low water supply. Plants were grown under P soluble versus insoluble P fertilization for comparing the effects of soybean inoculation on growth, uptake and use efficiency of phosphorus under moderate drought stress. At the beginning of flowering, half of plants was subjected to low water supply (35% water holding capacity, WHC) for 12 days while control plants were well watered - 70% WHC. The plants were harvested at the end of drought and physiological traits and P contents were analyzed. The inoculation treatments showed better plant growth and nutrient uptake when compared to uninoculated control. The application of the Burkholderia cepacia was more efficiently in terms plant growth than E. radicincitans especially under insoluble phosphates. Phosphorus concentrations of shoots and roots increased with both bacterial strains. The bacterial inoculation has much better stimulatory effect on nutrient uptake by soybean fertilized with insoluble phosphates. Study findings indicate that the combined application of PGPR (Burkholderia cepacia B36) and P amendments has the potential to improve P nutrition and growth of soybean cultivated on P-deficient soil under well-watered as well as moderate drought condition.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Yaodong Zhao ◽  
Wenjing Ma ◽  
Xiaohong Wei ◽  
Yu Long ◽  
Ying Zhao ◽  
...  

Alfalfa (Medicago sativa L.) is a high quality leguminous forage. Drought stress is one of the main factors that restrict the development of the alfalfa industry. High-throughput sequencing was used to analyze the microRNA (miRNA) profiles of alfalfa plants treated with CK (normal water), PEG (polyethylene glycol-6000; drought stress), and PEG + SNP (sodium nitroprusside; nitric oxide (NO) sprayed externally under drought stress). We identified 90 known miRNAs belonging to 46 families and predicted 177 new miRNAs. Real-time quantitative fluorescent PCR (qRT-PCR) was used to validate high-throughput expression analysis data. A total of 32 (14 known miRNAs and 18 new miRNAs) and 55 (24 known miRNAs and 31 new miRNAs) differentially expressed miRNAs were identified in PEG and PEG + SNP samples. This suggested that exogenous NO can induce more new miRNAs. The differentially expressed miRNA maturation sequences in the two treatment groups were targeted by 86 and 157 potential target genes, separately. The function of target genes was annotated by gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis. The expression profiles of nine selected miRNAs and their target genes verified that their expression patterns were opposite. This study has documented that analysis of miRNA under PEG and PEG + SNP conditions provides important insights into the improvement of drought resistance of alfalfa by exogenous NO at the molecular level. This has important scientific value and practical significance for the improvement of plant drought resistance by exogenous NO.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1534
Author(s):  
Jing-Wei Fan ◽  
Xiao-Wei Yang ◽  
Tao Wang ◽  
Yuan Li ◽  
Hong Zhao ◽  
...  

Genotypic variations of alfalfa (Medicago sativa L.) to both phosphorus (P) deficiency and water deficiency are evident on the Loess Plateau of China. Here, we compare the adaptive mechanisms between an introduced cultivar (Arkaxiya) and a landrace (Longzhong) subjected to P- and water-limited conditions. The two genotypes were grown in a soil medium with 0, 4.2, 8.4 and 16.8 μg applied P per gram dry soil. Three water treatments were imposed (maintained at 75–90%, 45–55% and 30–35% of pot capacity (PC)) 28 days after sowing (DAS). At high soil P and high soil water content (SWC), high rates of net photosynthesis (Pn) contributed to greater plant growth and P-use efficiency (PUE) in the introduced Arkaxiya compared to the landrace Longzhong. However, at low SWC, Longzhong had enhanced antioxidative defense (mainly SOD and CAT) compared to Arkaxiya. In addition, shorter shoot length and greater branching in Longzhong than Arkaxiya may also facilitate adaptation to low SWC. The contrasting adaptive mechanisms of the two genotypes provide a number of early-screening parameters associated with plant growth for the selection and introduction of alfalfa targeted at different rainfall and available P environments.


Sign in / Sign up

Export Citation Format

Share Document