In-field heterogeneity of apple replant disease: Relations to abiotic soil properties

2020 ◽  
Vol 259 ◽  
pp. 108809 ◽  
Author(s):  
Margaux Simon ◽  
Eva Lehndorff ◽  
Andreas Wrede ◽  
Wulf Amelung
2018 ◽  
Vol 241 ◽  
pp. 167-177 ◽  
Author(s):  
Felix Mahnkopp ◽  
Margaux Simon ◽  
Eva Lehndorff ◽  
Stefan Pätzold ◽  
Andreas Wrede ◽  
...  

Author(s):  
Alicia Balbín-Suárez ◽  
Samuel Jacquiod ◽  
Annmarie-Deetja Rohr ◽  
Benye Liu ◽  
Henryk Flachowsky ◽  
...  

Abstract A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD) causing agents to spread in soil. ‘M26’ apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of OTUs affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production, and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.


2021 ◽  
Vol 192 ◽  
pp. 112972
Author(s):  
Belnaser A. Busnena ◽  
Till Beuerle ◽  
Felix Mahnkopp-Dirks ◽  
Traud Winkelmann ◽  
Ludger Beerhues ◽  
...  

Author(s):  
Xorla Kanfra ◽  
Ahmed Elhady ◽  
Hendrik Thiem ◽  
Sven Pleger ◽  
Markus Höfer ◽  
...  

AbstractPhytonematodes cause severe yield losses in horticulture, partly because they are difficult to manage. Compact, energy-efficient generators that electrochemically produce ozonated water by utilizing diamond-coated electrodes have become available. In this study, the application of on-site generated ozonated water to inactivate soil nematodes and to mitigate nematode-mediated apple replant disease was tested. Pratylenchus penetrans was highly susceptible to dissolved ozone (LC50 0.6 mg L−1). In one greenhouse experiment, treatment of P. penetrans in soil with ozonated water (0.27 mg ozone L−1 soil) reduced subsequent invasion of the nematodes into roots by 60%. Growth of apple saplings in soil that was affected by apple replant disease (ARD) was significantly improved following a treatment with 1/10 volume ozonated water compared to the control. In a second greenhouse experiment, one-time drenching of ARD soil with ozonated water was followed by improved growth of apple plants similar to that in autoclaved soil. A second application of ozonated water did not further improve plant growth. The number of active nematodes in replanted soil that moved through a Baermann filter was significantly reduced by all tested concentrations of ozone (0.12–0.75 mg L−1 soil). A fraction of 19–36% of the nematodes survived and slightly recovered after four weeks. In conclusion, on-site generated ozonated water has potential to mitigate nematode problems in horticulture and to expand management options.


2021 ◽  
pp. 327-334
Author(s):  
S. Reim ◽  
A. Cestaro ◽  
C. Siewert ◽  
T. Wöhner ◽  
F. Mahnkopp-Dirks ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Viviane Radl ◽  
Jana Barbro Winkler ◽  
Susanne Kublik ◽  
Luhua Yang ◽  
Traud Winkelmann ◽  
...  

Abstract Background Apple replant disease (ARD) is a syndrome that occurs in areas where apple plants or closely related species have been previously cultivated. Even though ARD is a well-known phenomenon, which has been observed in different regions worldwide and occurs independent of the soil type, its causes still remain unclear. Results As expected, the biomass of plants grown in replant soil was significantly lower compared to those grown in control (virgin) soil. A shotgun metagenome analysis showed a clear differentiation between the rhizosphere and bulk soil compartments independent from the soil used. However, significant differences associated with apple replant disease were only observed in the rhizosphere compartment, for which we detected changes in the abundance of major bacterial genera. Interestingly, reads assigned to Actinobacteria were significantly reduced in relative abundance in rhizosphere samples of the soil affected by replant disease. Even though reads assigned to pathogenic fungi were detected, their relative abundance was low and did not differ significantly between the two different soils. Differences in microbiome structure also resulted in shifts in functional pattern. We observed an increase in genes related to stress sensing in the rhizosphere of soils affected by replant disease, whereas genes linked to nutrient sensing and uptake dominated in control soils. Moreover, we observed a lower abundance of genes coding for enzymes which trigger the degradation of aromatic compounds in rhizosphere of soils affected by replant disease, which is probably connected with higher concentration of phenolic compounds, generally associated with disease progression. Conclusions Our study shows, for the first time, how apple replanting affects soil functioning by altering the soil microbiome. Particularly, the decrease in the abundance of genes which code for enzymes catalyzing the degradation of aromatic compounds, observed in the rhizosphere of plants grown in soil affected by apple replant disease, is of interest. Apple rootstocks are known to synthetize many phenolic compounds, including defense related phytoalexins, which have been considered for long to be connected with the emergence of replant disease. The knowledge gained in this study might help to develop targeted strategies to overcome or at least reduce the effects of ARD symptoms.


Sign in / Sign up

Export Citation Format

Share Document