Genome-wide identification and analysis of promising GDSL-type lipases related to gummy stem blight resistance in watermelon (Citrullus lanatus)

2021 ◽  
Vol 289 ◽  
pp. 110461
Author(s):  
Runsheng Ren ◽  
Xingping Yang ◽  
Jinhua Xu ◽  
Keyun Zhang ◽  
Man Zhang ◽  
...  
Author(s):  
Winnie Gimode ◽  
Kan Bao ◽  
Zhangjun Fei ◽  
Cecilia McGregor

Abstract Key message We identified QTLs associated with gummy stem blight resistance in an interspecific F2:3Citrullus population and developed marker assays for selection of the loci in watermelon. Abstract Gummy stem blight (GSB), caused by three Stagonosporopsis spp., is a devastating fungal disease of watermelon (Citrullus lanatus) and other cucurbits that can lead to severe yield losses. Currently, no commercial cultivars with genetic resistance to GSB in the field have been reported. Utilizing GSB-resistant cultivars would reduce yield losses, decrease the high cost of disease control, and diminish hazards resulting from frequent fungicide application. The objective of this study was to identify quantitative trait loci (QTLs) associated with GSB resistance in an F2:3 interspecific Citrullus mapping population (N = 178), derived from a cross between Crimson Sweet (C. lanatus) and GSB-resistant PI 482276 (C. amarus). The population was phenotyped by inoculating seedlings with Stagonosporopsis citrulli 12178A in the greenhouse in two separate experiments, each with three replications. We identified three QTLs (ClGSB3.1, ClGSB5.1 and ClGSB7.1) associated with GSB resistance, explaining between 6.4 and 21.1% of the phenotypic variation. The genes underlying ClGSB5.1 includes an NBS-LRR gene (ClCG05G019540) previously identified as a candidate gene for GSB resistance in watermelon. Locus ClGSB7.1 accounted for the highest phenotypic variation and harbors twenty-two candidate genes associated with disease resistance. Among them is ClCG07G013230, encoding an Avr9/Cf-9 rapidly elicited disease resistance protein, which contains a non-synonymous point mutation in the DUF761 domain that was significantly associated with GSB resistance. High throughput markers were developed for selection of ClGSB5.1 and ClGSB7.1. Our findings will facilitate the use of molecular markers for efficient introgression of the resistance loci and development of GSB-resistant watermelon cultivars.


Euphytica ◽  
1978 ◽  
Vol 27 (3) ◽  
pp. 861-864 ◽  
Author(s):  
Q. P. Van Der Meer ◽  
J. L. Van Bennekom ◽  
A. C. Van Der Giessen

2009 ◽  
Vol 27 (3) ◽  
pp. 330-334 ◽  
Author(s):  
Gil R dos Santos ◽  
Manoel D de Castro Neto ◽  
Hudson SM de Almeida ◽  
Leandro N Ramos ◽  
Renato A Sarmento ◽  
...  

Nitrogen fertilization is an important step for watermelon (Citrullus lanatus) production due to its influence over yield, fruit quality, and disease severity. Currently, the gummy stem blight (Didymella bryoniae) and the downy mildew (Pseudoperonospora cubensis) can be taken as the most important watermelon diseases, since they impose severe impairment to the crop. Furthermore, studies focusing on plant responses to nitrogen fertilization regarding fruit yield and quality, and disease resistance are rare. Hence, the present study aimed at evaluating the effect of nitrogen doses on fruit yield and quality, and on disease prevalence in watermelon. Two experiments were carried out at the Universidade Federal de Tocantins, employing sprinkler irrigation, in an area previously used to grow watermelon. The experimental design was blocks at random, with five treatments (N doses, applied twice as side-dressing, in kg ha-1, as follows: T1= control treatment without N, T2= 20, T3= 40, T4= 80, and T5= 120), and four replications. Urea (45% N) was used as the N source. In the first assay, the highest fruit yield and average weight were observed when 40 kg ha-1 of N were applied. The highest severity of the gummy stem blight was observed when the highest nitrogen doses were applied (80 and 120 kg ha-1). In the second assay, the highest severity levels of the gummy stem blight, as well as of mildew, were observed again when N doses were the highest (80 and 120 kg ha-1). The lowest severity levels for both diseases were observed in the control treatment.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 815-822 ◽  
Author(s):  
Anthony P. Keinath

To prevent yield reductions from gummy stem blight, fungicides often must be applied to watermelon (Citrullus lanatus) and muskmelon (Cucumis melo). Didymella bryoniae, the ascomycete fungus that causes gummy stem blight, is resistant to thiophanate-methyl, quinone-outside inhibitors (QoI), boscalid, and penthiopyrad. In place of these fungicides, premixtures of cyprodinil and fludioxonil (Switch 62.5WG) or cyprodinil and difenoconazole (Inspire Super 2.82SC) are used. The objectives of this study were to examine baseline isolates of D. bryoniae for sensitivity to cyprodinil and fludioxonil and to determine the efficacy of cyprodinil-fludioxonil and cyprodinil-difenoconazole against isolates resistant to QoI fungicides and boscalid. Colony diameters of 146 isolates of D. bryoniae collected in South Carolina and other U.S. states prior to 2008 were measured on glucose minimal medium amended with cyprodinil or fludioxonil. Mean effective concentration values that reduced relative colony diameter by 50% were 0.052 and 0.099 mg/liter cyprodinil and fludioxonil, respectively. In autumn 2008, 2009, and 2011, field-grown watermelon inoculated with isolates resistant to QoI fungicides and boscalid was treated with boscalid-pyraclostrobin alternated with chlorothalonil, cyprodinil-fludioxonil alternated with chlorothalonil, cyprodinil-difenoconazole alternated with chlorothalonil, tebuconazole alternated with chlorothalonil, chlorothalonil, or water. In 2008 and 2011, both cyprodinil treatments reduced disease severity compared with the water control treatment and chlorothalonil alone. In 2008 and 2009, cyprodinil-fludioxonil reduced severity compared with boscalid-pyraclostrobin and, in 2008, cyprodinil-difenoconazole and tebuconazole also did. Use of cyprodinil-fludioxonil should control gummy stem blight effectively and may delay development of resistance to cyprodinil and fludioxonil in D. bryoniae. However, because Botrytis cinerea became resistant to both cyprodinil and fludioxonil after multiple applications of cyprodinil-fludioxonil per season, prudent fungicide rotations should be followed when using cyprodinil-containing fungicides against D. bryoniae.


HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1477-1482 ◽  
Author(s):  
Gabriele Gusmini ◽  
Luis A. Rivera-Burgos ◽  
Todd C. Wehner

Gummy stem blight (GSB), caused by three related species of Stagonosporopsis [Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), Stagonosporopsis citrulli, and Stagonosporopsis caricae], is a major disease of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] in most production areas of the United States. We studied the inheritance of resistance to GSB using three PI accessions of watermelon. Four families of six progenies (Pr, Ps, F1, F2, BC1Pr, and BC1Ps) were developed from four crosses of resistant PI accessions by susceptible cultivars. Each family was tested in 2002 and 2003 in North Carolina under field and greenhouse conditions for resistance to GSB. Artificial inoculation was used to induce uniform and strong epidemics. The effect of the Mendelian gene for resistance, db, was tested. Partial failure of the data to fit the single-gene inheritance suggested that resistance to GSB of PI 482283 and PI 526233 may be under the control of a more complex genetic system.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1331-1331 ◽  
Author(s):  
S. T. Koike

In 1997, greenhouse-produced transplants of watermelon (Citrullus lanatus) developed water-soaked lesions on leaf petioles and main stems. As disease progressed, petioles and stems became necrotic and shriveled, and exuded a sticky, translucent tan liquid. Symptoms spread to leaves, which wilted and collapsed. Affected transplants eventually died. Although fruiting bodies were not observed on diseased plants, a fungal agent was consistently isolated from symptomatic tissues. When incubated under lights (12 h light/12 h dark cycle), isolates on potato dextrose agar produced numerous pycnidia with hyaline, cylindrical, one-septate conidia with mean dimensions of 5.6 × 2.8 μm. Under the same incubation conditions, isolates on V8 juice agar produced sparse ostiolate pseudothecia with bitunicate asci and hyaline, oval, one-septate ascospores with mean dimensions of 12.0 × 4.0 μm. Based on these characters, the isolates were identified as Didymella bryoniae (anamorph Phoma cucurbitacearum) (1,2). Pathogenicity was tested by producing conidial inocula of representative isolates and inoculating wounded cotyledons, true leaves, and petioles of watermelon (cv. Sangria), and wounded true leaves and petioles of cucumber (Cucumis sativus cv. Premier Hybrid) (3). Sterile, distilled water was applied to corresponding wounded tissues of control plants. All plants were kept in a humid chamber for 4 days. After 6 (watermelon) to 10 (cucumber) days, inoculated plants exhibited water-soaked lesions followed by necrosis, petiole and leaf wilting, and shriveling of tissues. Pycnidia were observed on cucumber plants after 18 days. The pathogen was reisolated from all inoculated plants and identified as D. bryoniae. Control plants developed no disease symptoms. In addition, agar plugs colonized with the watermelon isolates were placed onto cucumber fruit that were wounded slightly with a sterile scalpel. Fruit were incubated at 22 to 24°C in humid chambers and after 2 days sunken, circular lesions developed. The same pathogen was reisolated from the margins of fruit lesions. Wounded control fruit received sterile agar plugs and did not develop any symptoms. This is the first documentation of gummy stem blight on watermelon transplants in California. References: (1) W. F. Chiu and J. C. Walker. J. Agric. Res. 78:81, 1949. (2) A. P. Keinath et al. Phytopathology 85:364, 1995. (3) A. J. Wyszogrodzka et al. Euphytica 35:603, 1986.


Plant Disease ◽  
2020 ◽  
Author(s):  
Anthony P. Keinath

Fungicide applications are the main method to manage gummy stem blight on watermelon (Citrullus lanatus) and other cucurbits, but it is unknown if fungicides affect development of leaf lesions or fruiting bodies by Stagonosporopsis citrulli. Cyprodinil + fludioxonil (Switch), cyprodinil + difenoconazole (Inspire Super), cyprodinil (Vangard), fludioxonil (Cannonball), and difenoconazole (Inspire) were applied to watermelon in rotation with chlorothalonil (Bravo) in fall 2017, 2018, and 2019. Water and chlorothalonil applied weekly served as control treatments. All fungicides reduced disease severity (percentage of leaf area diseased) and AUDPC in field plots compared to water. Cyprodinil + fludioxonil and cyprodinil + difenoconazole reduced disease severity and AUDPC more than chlorothalonil. Fungicides did not affect the number, diameter, expansion, or area of lesions. All fungicides reduced the number of lesions with fruiting bodies of S. citrulli compared to water (P < 0.05). Cyprodinil + fludioxonil and cyprodinil + difenoconazole reduced the percentage of leaf lesions with fruiting bodies, and the diameter and area of the portions of leaf lesions covered with fruiting bodies, compared to water and chlorothalonil. Premix fungicides containing cyprodinil reduced fruiting body formation by S. citrulli, which may partially explain their efficacy in managing gummy stem blight.


Plant Disease ◽  
2015 ◽  
Vol 99 (11) ◽  
pp. 1488-1499 ◽  
Author(s):  
Binoy Babu ◽  
Yonas W. Kefialew ◽  
Ping-Fang Li ◽  
Xing-Ping Yang ◽  
Sheeja George ◽  
...  

Gummy stem blight caused by Didymella bryoniae (anamorph Phoma cucurbitacearum) is a major fungal disease of watermelon (Citrullus lanatus) and other cucurbits. Thirty-five isolates of Didymella and Phoma spp. associated with symptoms of gummy stem blight on watermelon, Canary melon (Cucumis melo), muskmelon (C. melo), and winter squash (Cucurbita maxima) from Florida and Georgia were characterized based on morphology on agar media, pathogenicity on ‘Melody’ watermelon, the internal transcribed spacer (ITS) sequence of ribosomal DNA (rDNA), random amplified polymorphic DNA (RAPD) analysis, and polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) analysis. All of the isolates were pathogenic on watermelon but differed in virulence. RAPD and ITS sequence analysis indicated genetic variability among the isolates but PCR-RFLP analysis did not show any variability. ITS sequence phylogenetic analysis identified two isolates, DB-05 and DB-33, which had a greater identity to that of D. bryoniae isolates from China (98 to 100% sequence homology) than other isolates from Florida and Georgia (95 to 98%). These two isolates possessed a single nucleotide substitution of A to G at position 131 of the ITS1 region. The study characterized the genetic profile of a collection of D. bryoniae isolates from Florida and Georgia in relation to isolates from other U.S. states and countries.


Sign in / Sign up

Export Citation Format

Share Document