Insights into the molecular basis of biocontrol of Botrytis cinerea by Clonostachys rosea in tomato

2022 ◽  
Vol 291 ◽  
pp. 110547
Author(s):  
Fanyue Meng ◽  
Rui Lv ◽  
Mozhen Cheng ◽  
Fulei Mo ◽  
Nian Zhang ◽  
...  
2006 ◽  
Vol 19 (10) ◽  
pp. 1103-1112 ◽  
Author(s):  
Laurent Laquitaine ◽  
Eric Gomès ◽  
Julie François ◽  
Chloé Marchive ◽  
Stéphanie Pascal ◽  
...  

Type I lipid transfer proteins (LTPs) are basic, 9-kDa cystein-rich proteins believed to be involved in plant defense mechanisms. A 2,100-bp fragment containing the coding region of Vitis vinifera lipid transfer protein 1 (VvLTP1) and 1,420-bp of its promoter region was isolated by screening a grape genomic library. In silico analysis revealed several putative, defense-related, cis-regulatory elements such as W- and MYB-boxes, involved in the binding of WRKY and MYB transcription factors, respectively. The 5′-truncated versions of the VvLTP1 promoter were generated, cloned in front of the β-glucuronidase (GUS) reporter gene, and introduced in tobacco plants and grapevine cell suspensions using Agrobacterium spp. Single MYB- and the W-boxes identified on the 0.250-kbp fragment were sufficient to induce GUS activity in transgenic tobacco plants after transient expression of MYB and WRKY. Ergosterol, a nonspecific fungal elicitor, induced GUS activity in transgenic grapevine cell suspensions transformed with the 1,420- and 750-bp promoter containing a palindromic arrangement of two Wboxes but not the 650- or 250-bp fragment, where only one W-box was present. Moreover, ergosterol triggered WRKY, VvLTP1, and stilbene synthase gene expression in grape plantlets and enhanced protection against Botrytis cinerea. The molecular basis of ergosterol-induced protection is discussed.


2009 ◽  
Vol 5 (12) ◽  
pp. e1000696 ◽  
Author(s):  
Matthias Kretschmer ◽  
Michaela Leroch ◽  
Andreas Mosbach ◽  
Anne-Sophie Walker ◽  
Sabine Fillinger ◽  
...  

2008 ◽  
Vol 27 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Marcelo A.B. Morandi ◽  
Liliana P.V. Mattos ◽  
Elen R. Santos ◽  
Rafaella C. Bonugli

2013 ◽  
Vol 65 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Lúcio B. Costa ◽  
Drauzio E.N. Rangel ◽  
Marcelo A.B. Morandi ◽  
Wagner Bettiol

2013 ◽  
Vol 93 (4) ◽  
pp. 639-642 ◽  
Author(s):  
K. W. Reeh ◽  
G. C. Cutler

Reeh, K. W. and Cutler, G. C. 2013. Laboratory efficacy and fungicide compatibility of Clonostachys rosea against Botrytis blight on lowbush blueberry. Can. J. Plant Sci. 93: 639–642. Lowbush blueberry (Vaccinium angustifolium) is an economically important crop. Clonostachys rosea is an endophytic fungus that can provide protection of plants from several pathogens, including Botrytis cinerea. It is unknown if C. rosea is able to colonize and protect V. angustifolium, and whether it is tolerant of fungicides commonly used for B. cinerea management in blueberry production. In a greenhouse experiment, pre-treatment of blueberry blossoms with C. rosea significantly reduced establishment of B. cinerea, but treatments after establishment of the pathogen were not effective. Clonostachys rosea demonstrated in vitro tolerance to the fungicide Switch®, but little or no tolerance to Pristine® and Maestro®. Our results are encouraging for additional field research examining the use of C. rosea as part of an integrated pest management program for B. cinerea control on lowbush blueberries.


2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Weizhen Wang ◽  
Yuan Fang ◽  
Muhammad Imran ◽  
Zhihong Hu ◽  
Sicong Zhang ◽  
...  

Botrytis cinerea is a destructive necrotrophic pathogen that can infect many plant species. The control of gray mold mainly relies on the application of fungicides, and the fungicide fludioxonil is widely used in China. However, the field fungicide resistance of B. cinerea to this compound is largely unknown. In this study, B. cinerea isolates were collected from different districts of Shanghai province in 2015–2017, and their sensitivity to fludioxonil was determined. A total of 65 out of 187 field isolates (34.76%) were found to be resistant to fludioxonil, with 36 (19.25%) showing high resistance and 29 (15.51%) showing moderate resistance. Most of these resistant isolates also showed resistance to iprodione, and some developed resistance to fungicides of other modes of action. AtrB gene expression, an indicator of MDR1 and MDR1h phenotypes, was not dramatically increased in the tested resistant isolates. Biological characteristics and osmotic sensitivity investigations showed that the fitness of resistant isolates was lower than that of sensitive ones. To investigate the molecular resistance mechanisms of B. cinerea to fludioxonil, the Bos1 amino acid sequences were compared between resistant and sensitive isolates. Resistant isolates revealed either no amino acid variations or the mutations I365S, I365N, Q369P/N373S, and N373S.


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1246-1251 ◽  
Author(s):  
G. Q. Li ◽  
H. C. Huang ◽  
S. N. Acharya ◽  
R. S. Erickson

Fungal and bacterial antagonists were tested for their inhibition of sporulation of Botrytis cinerea on detached alfalfa florets. Clonostachys rosea, Gliocladium catenulatum, and Trichoderma atroviride were evaluated for protecting young blossoms and pods of alfalfa from infection by B. cinerea in vitro. C. rosea was further tested to control pod rot and seed rot caused by B. cinerea under field conditions. The results showed that four of the tested antagonists, C. rosea, G. catenulatum, T. atroviride, and Trichothecium roseum, could inhibit sporulation by B. cinerea on detached alfalfa florets. Both C. rosea and G. catenulatum were effective in suppression of infection of alfalfa pods by B. cinerea when inoculated on fresh petals of alfalfa at the anthesis stage, and their efficacy was greater than that of Trichoderma atroviride. A significant suppression of B. cinerea by C. rosea and G. catenulatum on pods and seed of alfalfa was observed when they were inoculated on senescent petals at the pod-development stage. Results of a field trial indicated that C. rosea applied to upper parts of alfalfa plants significantly suppressed pod rot and seed rot caused by B. cinerea, and significantly increased seed production of alfalfa in each of 3 years. These studies show that C. rosea has potential as a biocontrol agent for control of alfalfa blossom blight caused by B. cinerea.


2016 ◽  
Vol 26 (12) ◽  
pp. 1736-1749 ◽  
Author(s):  
Lúcio Bertoldo Costa ◽  
Marcelo Augusto Boechat Morandi ◽  
Sara Marie Stricker ◽  
Wagner Bettiol

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 428-436 ◽  
Author(s):  
Yingjun Zhou ◽  
Na Li ◽  
Jingyi Yang ◽  
Long Yang ◽  
Mingde Wu ◽  
...  

Botrytis cinerea usually produces grayish mycelia and conidia as well as black-colored sclerotia (BS) due to accumulation of melanin. An isolate (XN-1) of B. cinerea producing orange-colored sclerotia (OS) on agar media was obtained from an orange-colored apothecium of an uncultured soil fungus. Whether or not the OS B. cinerea occurs on plants and how they differ from the BS isolates in melanogensis and ecological fitness remained unknown. This study, for the first time, confirmed the presence of the OS B. cinerea in strawberry and tomato plants that were surveyed in Hubei Province of China. Only five OS isolates were obtained from a total of 2,031 isolates surveyed from the two crops. The OS isolate XN-1 was compared and contrasted with the BS isolate B05.10 in sclerotial melanogenesis and ecological fitness. Sclerotial melanogenesis was evident in B05.10 but was deficient in XN-1. The OS were more susceptible to the two mycoparasites Trichoderma koningiopsis and Clonostachys rosea than the BS. The percentage of viable sclerotia after the mycoparasitism study was significantly (P < 0.01) lower in OS (21%) than in BS (48%). This study also reaffirmed the importance of melanization for survival of B. cinerea sclerotia.


Sign in / Sign up

Export Citation Format

Share Document