Trace element pattern in patients with fibromyalgia

2007 ◽  
Vol 385 (1-3) ◽  
pp. 20-27 ◽  
Author(s):  
I ROSBORG ◽  
E HYLLEN ◽  
J LIDBECK ◽  
B NIHLGARD ◽  
L GERHARDSSON
Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 394
Author(s):  
Richen Zhong ◽  
Min Zhang ◽  
Chang Yu ◽  
Hao Cui

A subduction zone plays a critical role in forging continental crust via formation of arc magmas, which are characteristically enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs). This trace element pattern results from the different mobilities of LILEs and HFSEs during slab-to-wedge mass transfer, but the mechanisms of trace element transfer from subducting crusts are not fully understood. In this study, thermodynamic simulations are carried out to evaluate the mobilities of K and Zr, as representative cases of LILE and HFSE, respectively, in slab fluids. The fluids buffered by basaltic eclogite can dissolve > 0.1 molal of K at sub-arc depths (~3 to 5.5 GPa). However, only minor amounts of K can be liberated by direct devolatilization of altered oceanic basalt, because sub-arc dehydration mainly takes place at temperatures < 600 °C (talc-out), wherein the fluid solubility of K is very limited (<0.01 molal). Therefore, serpentinite-derived fluids are required to flush K from the eclogite. The solubility of K can be enhanced by the addition of NaCl to the fluid, because fluid Na+ can unlock phengite-bonded K via a complex ion exchange. Finally, it is further confirmed that Zr and other HFSEs are immobile in slab fluids.


2019 ◽  
Vol 60 (12) ◽  
pp. 2317-2338 ◽  
Author(s):  
Marie-Noëlle Guilbaud ◽  
Claus Siebe ◽  
Christine Rasoazanamparany ◽  
Elisabeth Widom ◽  
Sergio Salinas ◽  
...  

Abstract The origin of the large diversity of rock types erupted along the subduction-related Trans-Mexican Volcanic Belt (TMVB) remains highly debated. In particular, several hypotheses have been proposed to explain the contemporary eruption of calc-alkaline and alkaline magmas along the belt. The Michoacán-Guanajuato Volcanic Field (MGVF) is an atypical, vast region of monogenetic activity located in the western-central part of the TMVB. Here we present new petrographic, geochemical, and isotopic (Sr–Nd–Pb–Os) data on recent volcanics in the Jorullo-Tacámbaro area that is the closest to the oceanic trench. TMVB-related volcanics in this area are Plio-Quaternary (&lt;5 Ma) and mainly form a calc-alkaline series from basalts to dacites, with rare (&lt;5 vol. %) alkaline rocks that range from trachybasalts to trachydacites, and transitional samples. Crystal textures are consistent with rapid crystallization at shallow depth and processes of mixing of similar magma batches (magma recharge). All of the samples exhibit an arc-type trace element pattern. Alkaline and transitional magmas have higher Na2O and K2O, lower Al2O3, and higher concentrations in incompatible elements (e.g. Sr, K, Ba, Th, Ce, P) compared to calc-alkaline rocks. Calc-alkaline rocks are similar isotopically to transitional and alkaline samples, except for a few low 87Sr/86Sr samples. Sr, Nd and Pb isotopes do not correlate with MgO or 187Os/188Os, indicating that they were not significantly influenced by crustal contamination. Isotopic and trace-element systematics suggest that the Tacámbaro magmas are produced by melting of a mantle wedge fluxed by fluids derived from a mixture of subducted sediments and altered oceanic crust. Alkaline and transitional magmas can be derived from a lower degree of partial melting of a similar source to that of the calc-alkaline rocks, whereas the few low 87Sr/86Sr calc-alkaline rocks require a lower proportion of fluid derived from oceanic sediments and crust. Volcanism at the trenchward edge of the MGVF was thus driven purely by subduction during the last 5 Ma, hence discarding slab rollback in this sector of the TMVB.


2019 ◽  
Vol 114 (2) ◽  
pp. 201-206
Author(s):  
Alexandre Raphael Cabral ◽  
Thomas Zack ◽  
Stephan König ◽  
Benjamin Eickmann ◽  
Rogerio Kwitko-Ribeiro ◽  
...  

1998 ◽  
Vol 65 (1) ◽  
pp. 45-51 ◽  
Author(s):  
M. Arnay-de-la-Rosa ◽  
E. Gonzalez-Reimers ◽  
J. Velasco-Vazquez ◽  
N. Barros-Lopez ◽  
L. Galindo-Martin

2019 ◽  
Vol 5 ◽  
pp. 56-69
Author(s):  
K.A. Kuksa ◽  
P.B. Sokolov ◽  
O.Yu. Marakhovskaya ◽  
G.A. Gussias ◽  
W. Brownscombe

The paper presents the detailed mineralogical and petrographic study of spinel-bearing marbles at the Luc Yen deposit, North Vietnam. The LA-ICP-MS analysis of 74 spinel grains, combined with mineralogical data, allows us to discriminate them into fve types according to mineral assemblages and trace element geochemistry. Forty seven minerals are identifed as inclusions in spinel grains and 38 minerals are described at Luc Yen deposit for the frst time including leonardsenite, tintisite, manasseite, chalcoalumite, cobaltite and spherocobaltite. The mineral assemblages, trace element pattern, and specifc mineral inclusions indicate the involvement of hydrothermal fuids related to magma intrusions in the formation of, at least, two of fve spinel types at the deposit.


2004 ◽  
Vol 21 (07) ◽  
pp. 159-167
Author(s):  
C. Bertram ◽  
R. Brandt ◽  
N. Jakubowski ◽  
M. Amend

2015 ◽  
Vol 238 (2) ◽  
pp. S147-S148 ◽  
Author(s):  
M.E. Alagüney ◽  
C. Bal ◽  
A. Hocaoglu ◽  
M. Büyükşekerci ◽  
L. Tutkun ◽  
...  

1992 ◽  
Vol 129 (3) ◽  
pp. 359-362 ◽  
Author(s):  
B. Schmitz

AbstractThe Ludlow Bone Bed in the Upper Silurian of the Welsh Borderland shows an anomalously high concentration of iridium (0.49 ppb) compared with background (0.040 ppb Ir). Considering the overall major and trace element pattern and the mineralogy of the bone bed, it appears that the bulk of their has precipitated from sea water and is not primarily related to an asteroid impact event. A secondary relation of the Ir to such an event, however, cannot be excluded. The profound sedimentological similarity (skeletal sands and hummocky cross-stratification) between the Ir-carrying ‘storm deposit’ at the Cretaceous–Tertiary boundary at Brazos River, Texas, and the LBB and overlying sediments may indicate such a relation.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 321 ◽  
Author(s):  
Irina Melekestseva ◽  
Valery Maslennikov ◽  
Nataliya Safina ◽  
Paolo Nimis ◽  
Svetlana Maslennikova ◽  
...  

The aim of this paper is the investigation of the role of diagenesis in the transformation of clastic sulfide sediments such as sulfide breccias from the Semenov-3 hydrothermal field (Mid-Atlantic Ridge). The breccias are composed of marcasite–pyrite clasts enclosed in a barite–sulfide–quartz matrix. Primary hydrothermal sulfides occur as colloform, fine-crystalline, porous and radial marcasite–pyrite clasts with inclusions or individual clasts of chalcopyrite, sphalerite, pyrrhotite, bornite, barite and rock-forming minerals. Diagenetic processes are responsible for the formation of more diverse authigenic mineralization including framboidal, ovoidal and nodular pyrite, coarse-crystalline pyrite and marcasite, anhedral and reniform chalcopyrite, inclusions of HgS phase and pyrrhotite–sphalerite–chalcopyrite aggregates in coarse-crystalline pyrite, zoned bornite–chalcopyrite grains, specular and globular hematite, tabular barite and quartz. The early diagenetic ovoid pyrite is enriched in most trace elements in contrast to late diagenetic varieties. Authigenic lower-temperature chalcopyrite is depleted in trace elements relative to high-temperature hydrothermal ones. Trace elements have different modes of occurrence: Se is hosted in pyrite and chalcopyrite; Tl is related to sphalerite and galena nanoinclusions; Au is associated with galena; As in pyrite is lattice-bound, whereas in chalcopyrite it is related to tetrahedrite–tennantite nanoinclusions; Cd in pyrite is hosted in sphalerite inclusions; Cd in chalcopyrite forms its own mineral; Co and Ni are hosted in chalcopyrite.


Sign in / Sign up

Export Citation Format

Share Document