Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland

2015 ◽  
Vol 521-522 ◽  
pp. 90-100 ◽  
Author(s):  
Piotr Gruba ◽  
Jarosław Socha ◽  
Ewa Błońska ◽  
Jarosław Lasota
2013 ◽  
Vol 59 (No. 4) ◽  
pp. 159-168 ◽  
Author(s):  
F. Pastorella ◽  
A. Paletto

Stand structure and species diversity are two useful parameters to provide a synthetic measure of forest biodiversity. The stand structure is spatial distribution, mutual position, diameter and height differentiation of trees in a forest ecosystem and it highly influences habitat and species diversity. The forest stand and species diversity can be measured through indices that provide important information to better address silvicultural practices and forest management strategies in the short and long-term period. These indices can be combined in a composite index in order to evaluate the complex diversity at the stand level. The aim of the paper is to identify and to test a complex index (S-index) allowing to take into account both the tree species composition and the stand structure. S-index was applied in a case study in the north-east of Italy (Trentino province). The results show that the Norway spruce forests in Trentino province are characterized by a medium-low level of complexity (S-index is in a range between 0.14 and 0.46) due to a low tree species composition rather than to the stand structure (diametric differentiation and spatial distribution of trees).  


2014 ◽  
Vol 77 ◽  
pp. 129-140 ◽  
Author(s):  
Alexandra Rodriguez ◽  
Gary M. Lovett ◽  
Kathleen C. Weathers ◽  
Mary A. Arthur ◽  
Pamela H. Templer ◽  
...  

2016 ◽  
Vol 553 ◽  
pp. 532-540 ◽  
Author(s):  
Klára Komprdová ◽  
Jiří Komprda ◽  
Ladislav Menšík ◽  
Lenka Vaňková ◽  
Jiří Kulhavý ◽  
...  

2021 ◽  
Author(s):  
Marie Spohn ◽  
Johan Stendahl

Abstract. While the carbon (C) content of temperate and boreal forest soils is relatively well studied, much less is known about the ratios of C, nitrogen (N), and phosphorus (P) of the soil organic matter, and the abiotic and biotic factors that shape them. Therefore, the aim of this study was to explore carbon, nitrogen, and organic phosphorus (OP) contents and element ratios in temperate and boreal forest soils and their relationships with climate, dominant tree species, and soil texture. For this purpose, we studied 309 forest soils with a stand age >60 years located all over Sweden between 56° N and 68° N. The soils are a representative subsample of Swedish forest soils with a stand age >60 years that were sampled for the Swedish Forest Soil Inventory. We found that the N stock of the organic layer increased by a factor of 7.5 from −2 °C to 7.5 °C mean annual temperature (MAT), it increased almost twice as much as the organic layer stock along the MAT gradient. The increase in the N stock went along with an increase in the N : P ratio of the organic layer by a factor of 2.1 from −2 °C to 7.5 °C MAT (R2 = 0.36, p < 0.001). Forests dominated by pine had higher C : N ratios in the litter layer and mineral soil down to a depth of 65 cm than forests dominated by other tree species. Further, also the C : P ratio was increased in the pine-dominated forests compared to forests dominated by other tree species in the organic layer, but the C : OP ratio in the mineral soil was not elevated in pine forests. C, N and OP contents in the mineral soil were higher in fine-textured soils than in coarse-textured soils by a factor of 2.3, 3.5, and 4.6, respectively. Thus, the effect of texture was stronger on OP than on N and C, likely because OP adsorbs very rigidly to mineral surfaces. Further, we found, that the P and K concentrations of the organic layer were inversely related with the organic layer stock. The C and N concentrations of the mineral soil were best predicted by the combination of MAT, texture, and tree species, whereas the OP concentration was best predicted by the combination of MAT, texture and the P concentration of the parent material in the mineral soil. In the organic layer, the P concentration was best predicted by the organic layer stock. Taken together, the results show that the N : P ratio of the organic layer was most strongly related to MAT. Further, the C : N ratio was most strongly related to dominant tree species, even in the mineral subsoil. In contrast, the C : P ratio was only affected by dominant tree species in the organic layer, but the C : OP ratio in the mineral soil was hardly affected by tree species due to the strong effect of soil texture on the OP concentration.


2016 ◽  
Author(s):  
Mi-Hee Lee ◽  
Jean-Lionel Payeur-Poirier ◽  
Ji-Hyung Park ◽  
Egbert Matzner

Abstract. Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. Little is known about the behaviour of dissolved and particulate organic N and its relations to C. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the quality of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations were stable. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge, whereas nonlinear responses of POC and PON fluxes were observed. The cumulative C and N fluxes in runoff were in the order; DOC > POC and NO3-N > DON > PON. The cumulative DOC fluxes in runoff during the 2 months study period were much larger at the deciduous watershed (16 kg C ha−1) than at the mixed watershed (7 kg C ha−1), while the cumulative NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha−1) than at the deciduous watershed (2.9 kg N ha−1). Cumulative fluxes of POC and PON were similar at both watersheds. Quality parameters of organic matter in soils and runoff suggested that the contribution of near surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed-specific flowpaths.


2016 ◽  
Author(s):  
Stephan John ◽  
Gerrit Angst ◽  
Kristina Kirfel ◽  
Sebastian Preusser ◽  
Carsten W. Mueller ◽  
...  

Abstract. Radiocarbon (14C) analysis is an important tool that can provide information on the dynamics of organic matter in soils. Radiocarbon concentrations of soil organic matter (SOM) however, reflect the heterogeneous mixture of various organic compounds and are affected by different chemical, biological, and physical soil parameters. These parameters can vary strongly in soil profiles and thus affect the spatial distribution of the apparent 14C age of SOM considerably. The heterogeneity of SOM and its 14C signature may be even larger in subsoil horizons, which are thought to receive organic carbon inputs following preferential pathways. This will bias conclusions drawn from 14C analyses of individual soil profiles considerably. We thus investigated important soil parameters, which may influence the 14C distribution of SOM as well as the spatial heterogeneity of 14C distributions in soil profiles. The suspected strong heterogeneity and spatial variability, respectively of bulk SOM is confirmed by the variable 14C distribution in three 185 cm deep profiles in a Dystric Cambisol. The 14C contents are most variable in the C horizons because of large differences in the abundance of roots there. The distribution of root biomass and necromass and its organic carbon input is the most important factor affecting the 14C distribution of bulk SOM. The distance of the soil profiles to a beech did not influence the horizontal and vertical distribution of roots and 14C concentrations. Other parameters were found to be of minor importance including microbial biomass-derived carbon and soil texture. The microbial biomass however, may promote a faster turnover of SOM at hot spots resulting in lower 14C concentration there. Soil texture had no statistically significant influence on the spatial 14C distribution of bulk SOM. However, SOM in fine silt and clay sized particles (< 6.3 µm) yields slightly higher 14C concentrations than bulk SOM particularly at greater soil depth, which is in contrast to previous studies where silt and clay fractions contained older SOM stabilized by organo-mineral interaction. 14C contents of fine silt and clay correlate with the microbial biomass-derived carbon suggesting a considerable contribution of microbial-derived organic carbon. In conclusion, 14C analyses of bulk SOM mainly reflect the spatial distribution of roots, which is strongly variable even on a small spatial scale of few meters. This finding should be considered when using 14C analysis to determine SOM.


Sign in / Sign up

Export Citation Format

Share Document