Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects

2016 ◽  
Vol 569-570 ◽  
pp. 300-305 ◽  
Author(s):  
Chang-Fu Wu ◽  
Fu-Hui Shen ◽  
Ya-Ru Li ◽  
Tsung-Ming Tsao ◽  
Ming-Jer Tsai ◽  
...  
Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kent G Meredith ◽  
C A Pope ◽  
Joseph B Muhlestein ◽  
Jeffrey L Anderson ◽  
John B Cannon ◽  
...  

Introduction: Air pollution is associated with greater cardiovascular event risk, but which types of events and the specific at-risk individuals remain unknown. Hypothesis: Short-term exposure to fine particulate matter (PM 2.5 ) is associated with greater risk of acute coronary syndromes (ACS), including ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina (USA). Methods: ACS events treated at Intermountain Healthcare hospitals in Utah’s urban Wasatch Front region between September 10, 1993 and May 15, 2014 were included if the patient resided in that area (N=16,314). A time-stratified case-crossover design was performed matching the PM 2.5 exposure at the time of event with periods when the event did not occur (referent), for STEMI, NSTEMI, and USA. Patients served as their own controls. Odds ratios (OR) were determined for exposure threshold versus linear, non-threshold models. Results: In STEMI, NSTEMI, and USA patients, age averaged 62, 64, and 63 years; males constituted 73%, 66%, and 68%; current or past smoking was prevalent in 33%, 25%, and 26%; and significant coronary artery disease (CAD) (defined as ≥1 coronary with ≥70% stenosis) was found among 95%, 75%, and 74%, respectively. Short-term PM 2.5 exposure was associated with ACS events (Table). Conclusions: Short-term exposure of PM 2.5 was strongly associated with greater risk of STEMI, especially in patients with angiographic CAD. No association with NSTEMI was found, and only a weak effect for USA. This study supports a PM 2.5 exposure threshold of 25 μg/m 3 , below which little exposure effect is seen, while the effect is linear above that level.


Chemosphere ◽  
2019 ◽  
Vol 237 ◽  
pp. 124497 ◽  
Author(s):  
Bingqing Zuo ◽  
Cong Liu ◽  
Renjie Chen ◽  
Haidong Kan ◽  
Jian Sun ◽  
...  

2012 ◽  
Vol 60 (21) ◽  
pp. 2158-2166 ◽  
Author(s):  
Ranjini M. Krishnan ◽  
Sara D. Adar ◽  
Adam A. Szpiro ◽  
Neal W. Jorgensen ◽  
Victor C. Van Hee ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Masahiro Tahara ◽  
Yoshihisa Fujino ◽  
Kei Yamasaki ◽  
Keishi Oda ◽  
Takashi Kido ◽  
...  

Abstract Background Short-term exposure to ozone and nitrogen dioxide is a risk factor for acute exacerbation (AE) of idiopathic pulmonary fibrosis (AE-IPF). The comprehensive roles of exposure to fine particulate matter in AE-IPF remain unclear. We aim to investigate the association of short-term exposure to fine particulate matter with the incidence of AE-IPF and to determine the exposure-risk time window during 3 months before the diagnosis of AE-IPF. Methods IPF patients were retrospectively identified from the nationwide registry in Japan. We conducted a case–control study to assess the correlation between AE-IPF incidence and short-term exposure to eight air pollutants, including particulate matter < 2.5 µm (PM2.5). In the time-series data, we compared monthly mean exposure concentrations between months with AE (case months) and those without AE (control months). We used multilevel mixed-effects logistic regression models to consider individual and institutional-level variables, and also adjusted these models for several covariates, including temperature and humidity. An additional analysis with different monthly lag periods was conducted to determine the risk-exposure time window for 3 months before the diagnosis of AE-IPF. Results Overall, 152 patients with surgically diagnosed IPF were analyzed. AE-IPF was significantly associated with an increased mean exposure level of nitric oxide (NO) and PM2.5 30 days prior to AE diagnosis. Adjusted odds ratio (OR) with a 10 unit increase in NO was 1.46 [95% confidence interval (CI) 1.11–1.93], and PM2.5 was 2.56 (95% CI 1.27–5.15). Additional analysis revealed that AE-IPF was associated with exposure to NO during the lag periods lag 1, lag 2, lag 1–2, and lag 1–3, and PM2.5 during the lag periods lag 1 and lag 1–2. Conclusions Our results show that PM2.5 is a risk factor for AE-IPF, and the risk-exposure time window related to AE-IPF may lie within 1–2 months before the AE diagnosis. Further investigation is needed on the novel findings regarding the exposure to NO and AE-IPF.


Sign in / Sign up

Export Citation Format

Share Document