scholarly journals Is an ecosystem services-based approach developed for setting specific protection goals for plant protection products applicable to other chemicals?

2017 ◽  
Vol 580 ◽  
pp. 1222-1236 ◽  
Author(s):  
Lorraine Maltby ◽  
Mathew Jackson ◽  
Graham Whale ◽  
A. Ross Brown ◽  
Mick Hamer ◽  
...  
2022 ◽  
Author(s):  
Stéphane Pesce ◽  
Annette Bérard ◽  
Marie-Agnès Coutellec ◽  
Alexandra Langlais-Hesse ◽  
Mickaël Hedde ◽  
...  

There is growing interest in using the ecosystem services framework for environmental risk assessments of plant protection products (PPP). However, there is still a broad gap between most of the ecotoxicological endpoints used in PPP risk assessment and the evaluation of the risks and effects of PPP on ecosystem services. Here we propose a conceptual framework to link current and future knowledge on the ecotoxicological effects of PPP on biodiversity and ecological processes to their consequences on ecosystem functions and services. We first describe the main processes governing the relationships between biodiversity, ecological processes and ecosystem functions in response to effects of PPP. We define 12 main categories of ecosystem functions that could be directly linked with the ecological processes used as functional endpoints in investigations on the ecotoxicology of PPP. An exploration of perceptions on the possible links between these categories of ecosystem functions and groups of ecosystem services (by a panel scientific experts in various fields of environmental sciences) then finds that these direct and indirect linkages still need clarification. We illustrate how the proposed framework could be used on terrestrial microalgae and cyanobacteria to assess the potential effects of herbicides on ecosystem services. The framework proposed here uses a set of clearly-defined core categories of ecosystem functions and services, which should help identify which of them are effectively or potentially threatened by PPP. We argue that this framework could help harmonize and extend the scientific knowledge that informs decision-making and policy-making.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1710
Author(s):  
Beate Zimmermann ◽  
Ingrid Claß-Mahler ◽  
Moritz von Cossel ◽  
Iris Lewandowski ◽  
Jan Weik ◽  
...  

The search for approaches to a holistic sustainable agriculture requires the development of new cropping systems that provide additional ecosystem services beyond biomass supply for food, feed, material, and energy use. The reduction of chemical synthetic plant protection products is a key instrument to protect vulnerable natural resources such as groundwater and biodiversity. Together with an optimal use of mineral fertilizer, agroecological practices, and precision agriculture technologies, a complete elimination of chemical synthetic plant protection in mineral-ecological cropping systems (MECSs) may not only improve the environmental performance of agroecosystems, but also ensure their yield performance. Therefore, the development of MECSs aims to improve the overall ecosystem services of agricultural landscapes by (i) improving the provision of regulating ecosystem services compared to conventional cropping systems and (ii) improving the supply of provisioning ecosystem services compared to organic cropping systems. In the present review, all relevant research levels and aspects of this new farming concept are outlined and discussed based on a comprehensive literature review and the ongoing research project “Agriculture 4.0 without Chemical-Synthetic Plant Protection”.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 370
Author(s):  
Arkadiusz Artyszak ◽  
Dariusz Gozdowski ◽  
Alicja Siuda

Water shortage and drought are a growing problem in Europe. Therefore, effective methods for limiting its effects are necessary. At the same time, the “field to fork” strategy adopted by the European Commission aims to achieve a significant reduction in the use of plant protection products and fertilizers in the European Union. In an experiment conducted in 2018–2020, the effect of the method of foliar fertilization containing silicon and potassium on the yield and technological quality of sugar beet roots was assessed. The fertilizer was used in seven combinations, differing in the number and time of application. The best results were obtained by treating plants during drought stress. The better soil moisture for the plants, the smaller the pure sugar yield increase was observed. It is difficult to clearly state which combination of silicon and potassium foliar application is optimal, as their effects do not differ greatly.


Author(s):  
Gavin Lewis ◽  
Axel Dinter ◽  
Charlotte Elston ◽  
Michael Thomas Marx ◽  
Christoph Julian Mayer ◽  
...  

2021 ◽  
Author(s):  
Christian J. Kuster ◽  
Nicola J. Hewitt ◽  
Clare Butler Ellis ◽  
Christian Timmermann ◽  
Thomas Anft

Author(s):  
Marco Grella ◽  
Fabrizio Gioelli ◽  
Paolo Marucco ◽  
Ingrid Zwertvaegher ◽  
Eric Mozzanini ◽  
...  

AbstractThe pulse width modulation (PWM) spray system is the most advanced technology to obtain variable rate spray application without varying the operative sprayer parameters (e.g. spray pressure, nozzle size). According to the precision agriculture principles, PWM is the prime technology that allows to spray the required amount where needed without varying the droplet size spectra which benefits both the uniformity of spray quality and the spray drift reduction. However, some concerns related to the effect of on–off solenoid valves and the alternating on/off action of adjacent nozzles on final uneven spray coverage (SC) have arisen. Further evaluations of PWM systems used for spraying 3D crops under field conditions are welcomed. A tower-shaped airblast sprayer equipped with a PWM was tested in a vineyard. Twelve configurations, combining duty cycles (DC: 30, 50, 70, 100%) and forward speeds (FS: 4, 6, 8 km h−1), were tested. Two methodologies, namely field-standardized and real field conditions, were adopted to evaluate the effect of DC and FS on (1) SC variability (CV%) along both the sprayer travel direction and the vertical spray profile using long water sensitive papers (WSP), and (2) SC uniformity (IU, index value) within the canopy at different depths and heights, respectively. Furthermore, the SC (%) and deposit density (Nst, no stains cm−2), determined using short WSP, were used to evaluate the spray application performances taking into account the spray volumes applied. Under field-controlled conditions, the pulsing of the PWM system affects both the SC variability measured along the sprayer travel direction and along the vertical spray profile. In contrast, under real field conditions, the PWM system does not affect the uniformity of SC measured within the canopy. The relationship between SC and Nst allowed identification of the ranges of 200–250 and 300–370 l ha−1 as the most suitable spray volumes to be applied for insecticide and fungicide plant protection products, respectively.


Sign in / Sign up

Export Citation Format

Share Document