How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

2018 ◽  
Vol 635 ◽  
pp. 1255-1266 ◽  
Author(s):  
Qingqing Fang ◽  
Guoqiang Wang ◽  
Baolin Xue ◽  
Tingxi Liu ◽  
Anthony Kiem
2021 ◽  
Author(s):  
Nunziarita Palazzolo ◽  
David J. Peres ◽  
Enrico Creaco ◽  
Antonino Cancelliere

<p>Landslide triggering thresholds provide the rainfall conditions that are likely to trigger landslides, therefore their derivation is key for prediction purposes. Different variables can be considered for the identification of thresholds, which commonly are in the form of a power-law relationship linking rainfall event duration and intensity or cumulated event rainfall. The assessment of such rainfall thresholds generally neglects initial soil moisture conditions at each rainfall event, which are indeed a predisposing factor that can be crucial for the proper definition of the triggering scenario. Thus, more studies are needed to understand whether and the extent to which the integration of the initial soil moisture conditions with rainfall thresholds could improve the conventional precipitation-based approach. Although soil moisture data availability has hindered such type of studies, yet now this information is increasingly becoming available at the large scale, for instance as an output of meteorological reanalysis initiatives. In particular, in this study, we focus on the use of the ERA5-Land reanalysis soil moisture dataset. Climate reanalysis combines past observations with models in order to generate consistent time series and the ERA5-Land data actually provides the volume of water in soil layer at different depths and at global scale. Era5-Land project is, indeed, a global dataset at 9 km horizontal resolution in which atmospheric data are at an hourly scale from 1981 to present. Volumetric soil water data are available at four depths ranging from the surface level to 289 cm, namely 0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm. After collecting the rainfall and soil moisture data at the desired spatio-temporal resolution, together with the target data discriminating landslide and no-landslide events, we develop automatic triggering/non-triggering classifiers and test their performances via confusion matrix statistics. In particular, we compare the performances associated with the following set of precursors: a) event rainfall duration and depth (traditional approach), b) initial soil moisture at several soil depths, and c) event rainfall duration and depth and initial soil moisture at different depths. The approach is applied to the Oltrepò Pavese region (northern Italy), for which the historical observed landslides have been provided by the IFFI project (Italian landslides inventory). Results show that soil moisture may allow an improvement in the performances of the classifier, but that the quality of the landslide inventory is crucial.</p>


Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 607-621 ◽  
Author(s):  
Sanne Diek ◽  
Sabine Chabrillat ◽  
Marco Nocita ◽  
Michael E. Schaepman ◽  
Rogier de Jong

Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


Author(s):  
Yan Ye ◽  
Jinping Zhang ◽  
Xunjian Long ◽  
Lihua Ma ◽  
Yong Ye

Abstract In order to survey the possible periodic, uncertainty and common features in runoff with multi-temporal scales, the empirical mode decomposition (EMD) method combined with the set pair analysis (SPA) method was applied, with data observed at Zhangjiashan hydrological station. The results showed that the flood season and annual runoff time series consisted of four intrinsic mode function (IMF) components, and the non-flood season time series exhibited three IMF components. Moreover, based on the different coupled set pairs from the time series, the identity, discrepancy, and contrary of different periods at multi-temporal scales were determined by the SPA method. The degree of connection μ between the flood season and annual runoff periods were the highest, with 0.94, 0.77, 0.7 and 0.73, respectively, and the μ between the flood periods and the non-flood periods were the lowest, with 0.66, 0.46, 0.24 and 0.24, respectively. Third, the maximum μ of each SPA appeared in the first mode function. In general, the different extractive periods decomposed by EMD method can reflected the average state of Jinghe River. Results also verified that runoff suffered from seasonal and periodic fluctuations, and fluctuations in the short-term corresponded to the most important variable. Therefore, the conclusions draw in this study can improve water resources regulation and planning.


2021 ◽  
Vol 13 (16) ◽  
pp. 3118
Author(s):  
Wanqiu Xing ◽  
Weiguang Wang ◽  
Quanxi Shao ◽  
Linye Song ◽  
Mingzhu Cao

Although soil moisture (SM) is an important constraint factor of evapotranspiration (ET), the majority of the satellite-driven ET models do not include SM observations, especially the SM at different depths, since its spatial and temporal distribution is difficult to obtain. Based on monthly three-layer SM data at a 0.25° spatial resolution determined from multi-sources, we updated the original Priestley Taylor–Jet Propulsion Laboratory (PT-JPL) algorithm to the Priestley Taylor–Soil Moisture Evapotranspiration (PT-SM ET) algorithm by incorporating SM control into soil evaporation (Es) and canopy transpiration (T). Both algorithms were evaluated using 17 eddy covariance towers across different biomes of China. The PT-SM ET model shows increased R2, NSE and reduced RMSE, Bias, with more improvements occurring in water-limited regions. SM incorporation into T enhanced ET estimates by increasing R2 and NSE by 4% and 18%, respectively, and RMSE and Bias were respectively reduced by 34% and 7 mm. Moreover, we applied the two ET algorithms to the whole of China and found larger increases in T and Es in the central, northeastern, and southern regions of China when using the PT-SM algorithm compared with the original algorithm. Additionally, the estimated mean annual ET increased from the northwest to the southeast. The SM constraint resulted in higher transpiration estimate and lower evaporation estimate. Es was greatest in the northwest arid region, interception was a large fraction in some rainforests, and T was dominant in most other regions. Further improvements in the estimation of ET components at high spatial and temporal resolution are likely to lead to a better understanding of the water movement through the soil–plant–atmosphere continuum.


1966 ◽  
Vol 46 (3) ◽  
pp. 299-315 ◽  
Author(s):  
W. Baier ◽  
Geo. W. Robertson

A new technique for the estimation of daily soil moisture on a zone-by-zone basis from standard meteorological data is herewith presented. The method, which is more versatile than existing meteorological budgets and therefore called "versatile budget" (VB), makes use of some basic concepts employed in the modulated budget, such as taking potential evapotranspiration (PE) as a possible maximum of actual evapotranspiration (AE) and subdividing the total available soil moisture into several zones of different capacities. The VB facilitates moisture withdrawal simultaneously from different depths of the soil profile permeated by roots in relation to the rate of PE and the available soil moisture in each zone. Adjustments for runoff, drainage, different types of soil-drying curves and the effect of different atmospheric demand rates on the AE/PE ratio are also incorporated.Comparisons between daily soil moisture readings from Colman blocks with estimates from the modulated budget and from the VB showed the feasibility of estimating daily soil moisture from standard meteorological data. The estimates of the VB were superior to those from the modulated budget on a zone-by-zone basis. The application of soil moisture statistics obtained from meteorological budgets is discussed.


Sign in / Sign up

Export Citation Format

Share Document