Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions

2019 ◽  
Vol 691 ◽  
pp. 713-726 ◽  
Author(s):  
G. Bharath ◽  
K. Rambabu ◽  
Fawzi Banat ◽  
Abdul Hai ◽  
Abdul Fahim Arangadi ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 785
Author(s):  
Tai-Feng Hung ◽  
Tzu-Hsien Hsieh ◽  
Feng-Shun Tseng ◽  
Lu-Yu Wang ◽  
Chang-Chung Yang ◽  
...  

Rational design and development of the electrodes with high-mass loading yet maintaining the excellent electrochemical properties are significant for a variety of electrochemical energy storage applications. In comparison with the slurry-casted electrode, herein, a hierarchically porous activated carbon (HPAC) electrode with higher mass loading (8.3 ± 0.2 mg/cm2) is successfully prepared. The pouch-type symmetric device (1 cell) with the propylene carbonate-based electrolyte shows the rate capability (7.1 F at 1 mA/cm2 and 4.8 F at 10 mA/cm2) and the cycling stability (83% at 12,000 cycles). On the other hand, an initial discharge capacitance of 32.4 F and the capacitance retention of 96% after 30,000 cycles are delivered from a pouch-type symmetric supercapacitor (five cells). The corresponding electrochemical performances are attributed to the fascinating properties of the HPAC and the synergistic features of the resulting electrode.


Author(s):  
Hongsik Yoon ◽  
Jiho Lee ◽  
Taijin Min ◽  
Gunhee Lee ◽  
Minsub Oh

Capacitive deionization (CDI) has been highlighted as a promising electrochemical water treatment system. However, the low deionization capacity of CDI electrodes has been a major limitation for its industrial application,...


2021 ◽  
Author(s):  
Kyu Seok Lee ◽  
Ye Ji Seo ◽  
Hyeon Taek Jeong

AbstractIn this study, we investigated that the activated carbon (AC)-based supercapacitor and introduced SIFSIX-3-Ni as a porous conducting additive to increase its electrochemical performances of AC/SIFSIX-3-Ni composite-based supercapacitor. The AC/SIFSIX-3-Ni composites are coated onto the aluminum substrate using the doctor blade method and conducted an ion-gel electrolyte to produce a symmetrical supercapacitor. The electrochemical properties of the AC/SIFSIX-3-Ni composite-based supercapacitor are evaluated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests (GCD). The AC/SIFSIX-3-Ni composite-based supercapacitor showed reasonable capacitive behavior in various electrochemical measurements, including CV, EIS, and GCD. The highest specific capacitance of the AC/SIFSIX-3-Ni composite-based supercapacitor was 129 F g−1 at 20 mV s−1.


2021 ◽  
Vol 292 ◽  
pp. 129652
Author(s):  
Thi Thom Nguyen ◽  
Le Thanh Nguyen Huynh ◽  
Thi Nam Pham ◽  
Thanh Nhut Tran ◽  
Thi Thanh Nguyen Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document