N enrichment, increased precipitation, and the effect of shrubs collectively shape the plant community in a desert ecosystem in northern China

2020 ◽  
Vol 716 ◽  
pp. 135379
Author(s):  
Yuxuan Bai ◽  
Weiwei She ◽  
Yuqing Zhang ◽  
Yangui Qiao ◽  
Jie Fu ◽  
...  
2021 ◽  
Author(s):  
Changchun Song ◽  
Yuqiu Zhang ◽  
Zhengru Ren ◽  
Haining Lu ◽  
Xu Chen ◽  
...  

Abstract PurposeNitrogen (N) enrichment through either artificial N application or atmospheric N deposition often increases ecosystem aboveground net primary productivity (ANPP). Therefore, results from N addition experiments have been used to assess the effects of atmospheric N deposition on ecosystems. However, the frequency of atmospheric N deposition is higher than that of artificial N addition. Whether the frequency of N addition alters the long-term response of ecosystem ANPP remains unclear. MethodsWe conducted a N addition frequency experiment from 2010 in a temperate grassland, northern China. Plant community ANPP was collected in 2019 and 2020, and soil physicochemical properties were measured in 2020. ResultsPlant community ANPP was significantly enhanced by N addition, whereas these increments declined with the frequency of N addition. The responses of the grasses ANPP to the frequency of N addition were similar to those of the plant community ANPP. Forbs ANPP was not significantly altered by the frequency of N addition. Meanwhile, soil ammonium and nitrate (NO3−–N) concentrations decreased with increasing N addition frequency, while the soil water content (SWC) and pH were similar among the frequencies of N addition. Moreover, SWC and soil NO3−–N jointly promoted grasses ANPP, ultimately increasing the plant community ANPP. ConclusionOur findings extend the water and N co-limitation hypothesis by specifying the preference for NO3−–N in arid/semi-arid regions. This study also illustrates that a higher frequency of N addition is more suitable for assessing the long-term impacts of atmospheric N deposition on ecosystems.


2014 ◽  
Vol 36 (6) ◽  
pp. 527 ◽  
Author(s):  
Zhen Wang ◽  
Qing Zhang ◽  
Xiaoping Xin ◽  
Yong Ding ◽  
Xiangyang Hou ◽  
...  

Understanding the relationship between the aboveground net primary production (ANPP) and annual precipitation in arid and semiarid grasslands is crucial for assessing the effects of climate change on grassland ecosystems. The temporal pattern of ANPP, based on long-term data on a semiarid ecosystem in Inner Mongolia, was investigated. The biomass of perennial grasses, perennial forbs and Stipa grandis P. Smirn., showed a positive relationship with annual precipitation. The amount of annual precipitation also changed the annual biomass of 13 other dominant species and consequently the ANPP. The coefficient of variation of the ANPP of the plant community was lower than the coefficient of variation of annual precipitation. Irrespective of the strong inter-annual variation in annual precipitation, the positive relationship found between ANPP and annual precipitation suggests the dependence of ANPP upon hydrological variations in typical steppe. Our findings highlight the importance of dominant perennial species and functional groups in mediating the responses of ANPP to annual precipitation in the typical steppe in northern China.


2021 ◽  
Author(s):  
Tong Yang ◽  
Cheng Chen ◽  
Xiaoke Wang ◽  
Shilin Xie

Wetlands in northern China are complex ecosystems composed of grasslands, lakes, rivers and swamps, which have immense ecological values. When a highway system passes through a wetland, it has adverse effects on its ecosystem. However, in many cases, it is difficult to avoid a highway system pass through a wetland. Taking the Erka wetland in northern China as an example, nine survey lines, perpendicular to the highway, were set up. According to the distance from the highway, the plant multi-element information was collected. After the analysis of plant growth habits, spatial characteristics and profile features, the following four conclusions were drawn: (1) the highway system divided the plants habitat and made the vegetation communities on both sides develop anisotropically; (2) the highway system interfered with the interspecific competition of the nearby plant populations, making it easier for the plant communities with fast propagation speed, drought resistance and anti-interference to establish advantages; (3) the plant growth within 80 m of the highway was inhibited and (4) the wetland plant community succeeded to grassland plant community. In order to reduce the adverse impact of highway system on wetland ecosystems, it is suggested that in the follow-up highway upgrading project, either diversion of highway or construction of bridge or culvert excavation should be considered.


Sign in / Sign up

Export Citation Format

Share Document