High-rate carboxylate production in dry fermentation of food waste at room temperature

2020 ◽  
Vol 714 ◽  
pp. 136695 ◽  
Author(s):  
Swakshar Saha ◽  
Hyung-Sool Lee
2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S169-S170
Author(s):  
Angela R Jockheck-Clark ◽  
Cortes Williams ◽  
Christine Kowalczewski ◽  
Jahnabi Roy ◽  
Marc A Thompson ◽  
...  

Abstract Introduction During periods of delayed burn treatment, cells within the eschar leach toxic and immunomodulatory metabolites that can profoundly impact neighboring tissue. Therefore, to reduce the burn-related morbidities and mortalities that are the result of delayed surgical interventions, electrospinning was utilized to generate a novel cerium (III) nitrate (Ce(III)N) dressing. Previously published work has demonstrated that topical Ce(III)N application changes the eschar morphology, and that tissue beneath the treated eschar was generally healthy and had a high rate of graft acceptance. Methods Ce(III)N was dissolved with polyethylene oxide and spun onto a grounded rotating mandrel. The uni-axially spun mesh was compared to a co-axially electrospun dressing that contained a Ce(III)N core. Dressings were evaluated for topography/morphology, porosity and oxygen permeation using scanning electron microscopy, helium pycnometry, and a gas exchange chamber, respectively. Ce(III)N release rates were evaluated, as well as 60-day storage stability. Results All electrospun dressings contained functional Ce(III)N, with the co-axially spun dressing containing three times the amount of Ce(III)N as the traditionally spun dressing. Uni-axially and co-axially spun nanofibers had diameters of 1487±560 nm and 1071±147 nm, and porosities of 83.9% and 74.1%, respectively. Scaffolds released the majority of Ce(III)N within the first hour of wetting. Conclusions All dressings were capable of a burst of Ce(III)N release and maintained stability when stored at room temperature for 60 days. Applicability of Research to Practice Despite advancement in protective equipment worn by military personnel, the incidence of thermal injury is expected to rise in future conflicts. There are no burn wound dressings that can mitigate the pathophysiological processes associated with delayed burn wound treatment.


2020 ◽  
Vol 307 ◽  
pp. 123195 ◽  
Author(s):  
Bao-Shan Xing ◽  
Sifan Cao ◽  
Yule Han ◽  
Junwei Wen ◽  
Kaidi Zhang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 27 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Leonardo Abbene ◽  
Fabio Principato ◽  
Gaetano Gerardi ◽  
Antonino Buttacavoli ◽  
Donato Cascio ◽  
...  

In this work, the spectroscopic performances of new cadmium–zinc–telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm−1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation of the charge losses at the inter-pixel gap region. High-rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 2 × 106 photons mm−2 s−1. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.


Author(s):  
D. Mathioudakis ◽  
I. Michalopoulos ◽  
K. Kalogeropoulos ◽  
K. Papadopoulou ◽  
G. Lyberatos

Abstract The objective of the current work is to study the impact of the operational parameters' variation (HRT, OLR and T) on biomethane productivity in a Periodic Anaerobic Baffled Reactor (PABR). The feedstock used was a biomass product named FORBI (Food Residue Biomass), which is dried and shredded source-separated household food waste. The Periodic Anaerobic Baffled Reactor (PABR) is an innovative, high-rate bioreactor. Apart from the Hydraulic Retention Time (HRT) and the Organic Loading Rate (OLR), an important operational parameter is the Switching Period (T) of the feeding compartment: when T is high, the bioreactor operation is similar to an Anaerobic baffled reactor (ABR), while when it is low, the operation approaches that of an Upflow Anaerobic Sludge Blanket Reactor (UASBR). Nine distinct experimental phases were conducted, during which the operational parameters of the PABR were consecutively modified: the HRT varied from 9 to 2.5 days, T between 2 days and 1 and finally the OLR from 1.24 gCOD/Lbioreactor*d to 8.08 gCOD/Lbioreactor*d. The maximum biomethane yield was 384 LCH4/kgFORBI corresponding to the operation at HRT = 5 d, OLR = 2.14 gCOD/Lbioreactor*d and T = 2 days. Similar efficiency (333 LCH4/kg­FORBI) was achieved at higher OLR (4.53 gCOD/Lbioreactor*d).


2021 ◽  
Vol 320 ◽  
pp. 124279
Author(s):  
Ju-Hyeong Jung ◽  
Young-Bo Sim ◽  
Jong-Hyun Baik ◽  
Jong-Hun Park ◽  
Sang-Hyoun Kim

Sign in / Sign up

Export Citation Format

Share Document