Glomalin-related soil protein enriched in δ13C and δ15N excels at storing blue carbon in mangrove wetlands

2020 ◽  
Vol 732 ◽  
pp. 138327
Author(s):  
Yuan Tian ◽  
Chongling Yan ◽  
Qiang Wang ◽  
Wei Ma ◽  
Dan Yang ◽  
...  
2020 ◽  
Author(s):  
Dylan R. Brown ◽  
Humberto Marrota ◽  
Roberta B. Peixoto ◽  
Alex Enrich-Prast ◽  
Glenda C. Barroso ◽  
...  

Abstract. Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring in arid or semi-arid regions near mangrove supratidal zones with no major fluvial contributions. Here, we estimate that organic carbon (OC), total nitrogen (TN) and total phosphorus (TP) are being buried at rates averaging 21 (± 6), 1.7 (± 0.3), and 1.4 (± 0.3) g m−2 y−1, respectively, during the previous century in three contrasting HTFs systems, one in Brazil (eutrophic) and two in Australia (oligotrophic). Although these rates are lower than those from nearby mangrove, saltmarsh and seagrass systems, the importance of HTFs as sinks for OC, TN and TP may be significant given their extensive coverage. Despite the measured short-term variability between net air-saltpan CO2 influx and emission estimates found during the dry and wet season in the Brazilian HTF, the only site with seasonal CO2 fluxes measurements, the OC sedimentary profiles over several decades suggests efficient OC burial at all sites. Indeed, the stable isotopes of OC and TN (δ13C and δ15N) along with C : N ratios show that microphytobenthos are the major source of the buried OC in these HTFs. Our findings highlight a previously unquantified carbon as well as nutrient sink and suggest that coastal HTF ecosystems could be included in the emerging blue carbon framework.


2019 ◽  
Vol 148 ◽  
pp. 142-152 ◽  
Author(s):  
Qiang Wang ◽  
Degang Mei ◽  
Jingyan Chen ◽  
Yushan Lin ◽  
Jingchun Liu ◽  
...  

2021 ◽  
Vol 18 (8) ◽  
pp. 2527-2538
Author(s):  
Dylan R. Brown ◽  
Humberto Marotta ◽  
Roberta B. Peixoto ◽  
Alex Enrich-Prast ◽  
Glenda C. Barroso ◽  
...  

Abstract. Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring in arid or semi-arid regions near mangrove supratidal zones with no major fluvial contributions. Here, we estimate that organic carbon (OC), total nitrogen (TN) and total phosphorus (TP) were buried at rates averaging 21 (±6), 1.7 (±0.3) and 1.4 (±0.3) gm-2yr-1, respectively, during the previous century in three contrasting HTF systems, one in Brazil (eutrophic) and two in Australia (oligotrophic). Although these rates are lower than those from nearby mangrove, saltmarsh and seagrass systems, the importance of HTFs as sinks for OC, TN and TP may be significant given their extensive coverage. Despite the measured short-term variability between net air–saltpan CO2 influx and emission estimates found during the dry and wet season in the Brazilian HTF, the only site with seasonal CO2 flux measurements, the OC sedimentary profiles over several decades suggest efficient OC burial at all sites. Indeed, the stable isotopes of OC and TN (δ13C and δ15N) along with C:N ratios show that microphytobenthos are the major source of the buried OC in these HTFs. Our findings highlight a previously unquantified carbon as well as a nutrient sink and suggest that coastal HTF ecosystems could be included in the emerging blue carbon framework.


2019 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Sören Weber1

Stable carbon (C) and nitrogen (N) isotopes in plants are important indicators of plant water use efficiency and N acquisition strategies. While often regarded as being under environmental control, there is growing evidence that evolutionary history may also shape variation in stable isotope ratios (δ13C and δ15N) among plant species. Here we examined patterns of foliar δ13C and δ15N in alpine tundra for 59 species in 20 plant families. To assess the importance of environmental controls and evolutionary history, we examined if average δ13C and δ15N predictably differed among habitat types, if individual species exhibited intraspecific trait variation (ITV) in δ13C and δ15N, and if there were a significant phylogenetic signal in δ13C and δ15N. We found that variation among habitat types in both δ13C and δ15N mirrored well-known patterns of water and nitrogen limitation. Conversely, we also found that 40% of species exhibited no ITV in δ13C and 35% of species exhibited no ITV in δ15N, suggesting that some species are under stronger evolutionary control. However, we only found a modest signal of phylogenetic conservatism in δ13C and no phylogenetic signal in δ15N suggesting that shared ancestry is a weaker driver of tundra wide variation in stable isotopes. Together, our results suggest that both evolutionary history and local environmental conditions play a role in determining variation in δ13C and δ15N and that considering both factors can help with interpreting isotope patterns in nature and with predicting which species may be able to respond to rapidly changing environmental conditions.


Jurnal Segara ◽  
2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Agustin Rustam ◽  
Terry L. Kepel ◽  
Restu Nur Afiati ◽  
Hadiwijaya L. Salim ◽  
Mariska Astrid ◽  
...  
Keyword(s):  

2011 ◽  
Vol 35 (2) ◽  
pp. 232-236
Author(s):  
Yi HUANG ◽  
Dong-Wei WANG ◽  
Jia-Liang CAI ◽  
Wei-Shuang ZHENG

Author(s):  
Hideki Kokubu ◽  
Hideki Kokubu

Blue Carbon, which is carbon captured by marine organisms, has recently come into focus as an important factor for climate change initiatives. This carbon is stored in vegetated coastal ecosystems, specifically mangrove forests, seagrass beds and salt marshes. The recognition of the C sequestration value of vegetated coastal ecosystems provides a strong argument for their protection and restoration. Therefore, it is necessary to improve scientific understanding of the mechanisms that stock control C in these ecosystems. However, the contribution of Blue Carbon sequestration to atmospheric CO2 in shallow waters is as yet unclear, since investigations and analysis technology are ongoing. In this study, Blue Carbon sinks by Zostera marina were evaluated in artificial (Gotenba) and natural (Matsunase) Zostera beds in Ise Bay, Japan. 12-hour continuous in situ photosynthesis and oxygen consumption measurements were performed in both areas by using chambers in light and dark conditions. The production and dead amount of Zostera marina shoots were estimated by standing stock measurements every month. It is estimated that the amount of carbon storage as Blue Carbon was 237g-C/m2/year and 197g-C/m2/year in the artificial and natural Zostera marina beds, respectively. These results indicated that Zostera marina plays a role towards sinking Blue Carbon.


2016 ◽  
Author(s):  
Caitlin T. McManimon ◽  
◽  
David P. Gillikin ◽  
William B. Ouimet ◽  
Michael T. Hren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document