scholarly journals The impact of long-term changes in air temperature on renewable energy in Poland

2020 ◽  
Vol 729 ◽  
pp. 138965 ◽  
Author(s):  
Fausto A. Canales ◽  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Marcin Wdowikowski ◽  
Bartłomiej Ciapała ◽  
...  
2020 ◽  
Vol 66 (No. 10) ◽  
pp. 447-457
Author(s):  
Nicoleta Mihaela Florea ◽  
Roxana Maria Badircea ◽  
Ramona Costina Pirvu ◽  
Alina Georgiana Manta ◽  
Marius Dalian Doran ◽  
...  

According to the objectives of the European Union concerning the climate changes, Member States should take all the necessary measures in order to reduce the greenhouse gas emissions. The aim of this study is to identify the causality relations between greenhouse gases emissions, added value from agriculture, renewable energy consumption, and economic growth based on a panel consisting of 11 states from the Central and Eastern Europe (CEECs) in the period between 2000 and 2017. The Autoregressive Distributed Lag (ARDL) method was used to estimate the long-term relationships among the variables. Also a Granger causality test based on the ARDL – Error Correction Model (ECM) and a Pairwise Granger causality test were used to identify the causality relationship and to detect the direction of causality among the variables. The results obtained reveal, in the long term, two bidirectional relationships between agriculture and economic growth and two unidirectional relationships from agriculture to greenhouse gas emissions and renewable energy. In the short term, four unidirectional relationships were found from agriculture to all the variables in the model and one unidirectional relationship from renewable energy to greenhouse gas emissions.


2019 ◽  
Vol 28 (1) ◽  
pp. 25-34
Author(s):  
Katarzyna Rozbicka ◽  
Martyna Zawistowska

The aim of the work is to evaluate thermal sensations based on the average daily temperature of air and to determine thermal stimuli, using interdependent variability of air temperature (average, maximum and minimum). The data from the weather station Ursynów – SGGW was used for the analysis in the period 1961–2016. The analysis showed that with the highest frequency (74%) there are thermal sensations “saving” (“slightly cold”, “cool”, “warm”). In the case of thermal stimuli with the greatest frequency, changes from day to day were described as “neutral”, not exceeding 2°C . Based on the analysis of the long-term period trend of the number of days in the year, it can be stated an increase in the number of days with the thermal stress “very warm”, which is results from a positive statistically significant trend and also a decrease in number of days with thermal stimuli “sharp”.


2008 ◽  
Vol 21 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Pascal Le Floc'h ◽  
Jean-Charles Poulard ◽  
Olivier Thébaud ◽  
Fabian Blanchard ◽  
Julien Bihel ◽  
...  

2021 ◽  
Author(s):  
Roman Výleta ◽  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavcova

<p>The future development of the runoff conditions, as a consequence of climate change, is of great interest for water managers. Information about the potential impacts of climate change on the hydrological regime is needed for long-term planning of water resources and flood protection.</p><p>The aim of this study is to evaluate the possible impacts of climate change on the runoff regime in five selected catchments located in the territory of Slovakia. Changes in climatic characteristics (i.e., precipitation and air temperature) for future time horizons were prepared by a regional climate model KNMI using the A1B emission scenario. The selected climatic scenario predicts a general increase in air temperature and precipitation (higher in winter than in summer). For simulations of runoff under changed conditions, a lumped rainfall-runoff model (the TUW model) was used. This model belongs to a group of conceptual models and follows a structure of a widely used Swedish HBV model. The TUW model was calibrated for the period of 2011 – 2019. We assumed that this period would be similar (to recent/warmer climate) in terms of the average daily air temperatures and daily precipitation totals. The future changes in runoff due to climate change were evaluated by comparing the simulated long-term mean monthly runoff for the current state (1981-2010) and modelled scenarios in three time periods (2011-2040, 2041-2070, and 2071-2100). The results indicate that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future. The runoff should increase in winter months compared to the reference period. This increase is probably related to a rise in temperature and anticipated snowmelt. Conversely, during the summer periods, a decrease in the long-term runoff could be assumed. According to modelling, these changes will be more pronounced in the later time horizons.</p><p>It should be noted that the results of the simulation are dependent on the availability of the inputs, the hydrological/climate model used, the schematization of the simulated processes, etc. Therefore, they need to be interpreted with a sufficient degree of caution</p>


2014 ◽  
Vol 35 (12) ◽  
pp. 3385-3396 ◽  
Author(s):  
Jianming Deng ◽  
Yunlin Zhang ◽  
Boqiang Qin ◽  
Kun Shi

Sign in / Sign up

Export Citation Format

Share Document