Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells

2021 ◽  
Vol 772 ◽  
pp. 144957
Author(s):  
Yufeng Gong ◽  
Ningbo Geng ◽  
Haijun Zhang ◽  
Yun Luo ◽  
John P. Giesy ◽  
...  
Diabetes ◽  
2006 ◽  
Vol 55 (10) ◽  
pp. 2688-2697 ◽  
Author(s):  
A. L. Carey ◽  
G. R. Steinberg ◽  
S. L. Macaulay ◽  
W. G. Thomas ◽  
A. G. Holmes ◽  
...  

2021 ◽  
Author(s):  
Rory P. Cunningham ◽  
Mary P. Moore ◽  
Ryan J. Daskek ◽  
Grace M. Meers ◽  
Takamune Takahashi ◽  
...  

Regulation of endothelial nitric oxide synthase (eNOS) in hepatocytes may be an important target in nonalcoholic fatty liver disease (NAFLD) development and progression to steatohepatitis (NASH). In this study, we show genetic deletion and viral knockdown of hepatocyte-specific eNOS exacerbated hepatic steatosis and inflammation, decreased hepatic mitochondrial fatty acid oxidation and respiration, increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission, and impaired the hepatic mitophagic (BNIP3 and LC3II) response. Conversely, overexpressing eNOS in hepatocytes in vitro and in vivo increased hepatocyte mitochondrial respiration and attenuated western diet induced NASH. Moreover, patients with elevated NAFLD activity score (histology score of worsening steatosis, hepatocyte ballooning, and inflammation) exhibited reduced hepatic eNOS expression which correlated with reduced hepatic mitochondrial fatty acid oxidation and lower hepatic protein expression of mitophagy protein BNIP3. The current study reveals an important molecular role for hepatocyte-specific eNOS as a key regulator of NAFLD/NASH susceptibility and mitochondrial quality control with direct clinical correlation to patients with NASH.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
YEOJIN PARK ◽  
Elly Ok ◽  
Hyo Jung Lee ◽  
Ji Yeon Kim ◽  
Mi Kyung Kim ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ling Tao ◽  
Yi Liu ◽  
Chao Xin ◽  
Weidong Huang ◽  
Lijian Zhang ◽  
...  

FNDC5 is a hormone secreted by myocytes that could reduce obesity and insulin resistance, However, the exact effect of FNDC5 on glucose and lipid metabolism remain poorly identified; More importantly, the signaling pathways that mediate the metabolic effects of FNDC5 is completely unknown. Here we showed that FNDC5 stimulates β-oxidation and glucose uptake in C2C12 cells in a dose- and time-dependent fashion in vitro (n=8, all P<0.01). In vivo study revealed that FNDC5 also enhanced glucose tolerance in diabetic mice and increased the glucose uptake evidenced by increased [18F] FDG accumulation in hearts by PET scan (n=6, all P<0.05). FNDC5 decreased the expression of gluconeogenesis related molecules (PEPCK and G6Pase) and increased the phosphorylation of ACC, a key modulator of fatty-acid oxidation, both in hepatocytes and C2C12 cells (n=3, all P<0.05). In parallel with its stimulation of β-oxidation and glucose uptake, FNDC5 increased the phosphorylation of AMPK both in hepatocytes and C2C12 cells in a dose- and time-dependent fashion in vitro and in vivo. More importantly, the β-oxidation and glucose uptake, the expression of PEPCK and G6Pase and the phosphorylation of ACC induced by FNDC5 were attenuated by AMPK inhibitor in hepatocytes and C2C12 cells (P<0.05). Most importantly, the FNDC5 induced glucose uptake and phosphorylation of ACC were attenuated in AMPK-DN mice (n=6, all P<0.05). The glucose-lowering effect of FNDC5 in diabetic mice was also attenuated by AMPK inhibitor. Our data presents the direct evidence that FNDC5 stimulates glucose utilization and fatty-acid oxidation by AMPK signaling pathway, suggesting that FNDC5 be a novel pharmacological approach for type 2 diabetes.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S9-S9
Author(s):  
Sheng Feng ◽  
Deborah Cooper ◽  
Lu Tan ◽  
Gail Meyers ◽  
Michael Bennett

Abstract Medium- and short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase (M/SCHAD, SCHAD) deficiency is a mitochondrial fatty acid oxidation disorder (FAOD). This enzyme catalyzes the penultimate step in fatty acid oxidation, the NAD+ dependent conversion of L-3-hydroxyacyl-CoA to 3-ketoacyl-CoA for medium- and short-chain acyl-CoA intermediates (C4-C12). The clinical presentations of most patients are recurrent hypoglycemia associated with hyperinsulinism. We presented four infants with C4 acyl-carnitine elevation identified by newborn screening that also showed an unusual phenotype of congenital hypotonia and gross developmental delay. Enzymatic studies confirmed the disease. Sequencing analysis of all the HADH coding exons on the four patients revealed a homozygous variant of a novel change (c.908G>T, p.Gly303Val). Western blot analysis subsequently confirmed the lack of the SCHAD protein. In addition, there is another previously reported benign variant (c.257T>C) identified in three infants. Therefore, we postulate that the HADH variant (c.908G>T) is indeed pathogenic and associated with a severe phenotype as evidenced by the cases described herein. Population screening for the c.908G>T mutation suggests this mutation to be common among Puerto Ricans. We recommend that SCHAD deficiency is included as part of the differential diagnosis of all infants with congenital hypotonia.


1982 ◽  
Vol 206 (1) ◽  
pp. 53-59 ◽  
Author(s):  
F Bauché ◽  
D Sabourault ◽  
Y Giudicelli ◽  
J Nordmann ◽  
R Nordmann

The effects of 2-mercaptoacetate on the respiration rates induced by different substrates were studied in vitro in isolated liver mitochondria. With palmitoyl-L-carnitine or 2-oxoglutarate as the substrate, the ADP-stimulated respiration (State 3) was dose-dependently inhibited by 2-mercaptoacetate. with glutamate or succinate as the substrate. State-3 respiration was only slightly inhibited by 2-mercaptoacetate. In contrast, the oxidation rate of 3-hydroxybutyrate was competitively inhibited by 2-mercaptoacetate in both isolated mitochondria and submitochondrial particles. In uncoupled mitochondria and in mitochondria in which ATP- and GTP-dependent acyl-CoA biosynthesis was inhibited, the inhibitory effect of 2-mercaptoacetate on palmitoyl-L-carnitine oxidation was abolished; under the same conditions, however, inhibition of 3-hydroxybutyrate oxidation by 2-mercaptoacetate still persisted. These results led to the following conclusions: 2-mercaptoacetate itself enters the mitochondrial matrix, inhibits fatty acid oxidation through a mechanism requiring an energy-dependent activation of 2-mercaptoacetate and itself inhibits 3-hydroxybutyrate oxidation through a competitive inhibition of the membrane-bound 3-hydroxybutyrate dehydrogenase. This study also strongly suggests that the compound responsible for the inhibition of fatty acid oxidation is 2-mercaptoacetyl-CoA.


2007 ◽  
Vol 137 (10) ◽  
pp. 2252-2257 ◽  
Author(s):  
Shinji Murosaki ◽  
Tae Ryong Lee ◽  
Koutarou Muroyama ◽  
Eui Seok Shin ◽  
Si Young Cho ◽  
...  

2019 ◽  
Vol 122 (2) ◽  
pp. 258-265 ◽  
Author(s):  
Simon R. Lord ◽  
Jennifer M. Collins ◽  
Wei-Chen Cheng ◽  
Syed Haider ◽  
Simon Wigfield ◽  
...  

Abstract Background Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy. Methods Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling of tumour samples carried out before and after metformin treatment. Results Multiple genes that regulate fatty acid oxidation were upregulated at the transcriptomic level and there was a differential change in expression between two previously identified cohorts of patients with distinct metabolic responses. Increase in expression of a mitochondrial fatty oxidation gene composite signature correlated with change in a proliferation gene signature. In vitro assays showed that, in contrast to previous studies in models of normal cells, metformin reduces fatty acid oxidation with a subsequent accumulation of intracellular triglyceride, independent of AMPK activation. Conclusions We propose that metformin at clinical doses targets fatty acid oxidation in cancer cells with implications for patient selection and drug combinations. Clinical Trial Registration NCT01266486.


Sign in / Sign up

Export Citation Format

Share Document