Sulfite pretreatment enhances the biodegradability of primary sludge and waste activated sludge towards cost-effective and carbon-neutral sludge treatment

Author(s):  
Feixiang Zan ◽  
Hao Huang ◽  
Gang Guo ◽  
Guanghao Chen
2013 ◽  
Vol 69 (3) ◽  
pp. 518-524 ◽  
Author(s):  
P. Vergine ◽  
J. Zábranská ◽  
R. Canziani

This paper presents the results of lab-scale experiments on low temperature thermal pre-treatment (less than 100 °C) prior to anaerobic digestion of sewage sludge. Two heating ways, microwave heating (MH) and conventional heating (CH), and two types of sludge, primary and waste activated sludge, were compared under the same experimental conditions. The degree of solubilisation produced by MH and CH up to 72, 82 and 93 °C was firstly estimated. For both types of heating, increase in soluble chemical oxygen demand (COD) caused by the pre-treatment was about 14% on waste activated sludge and only 3% on primary sludge. The final temperature of 72 °C resulted as the most cost-effective in terms of additional soluble COD per unit of energy required. Subsequently, five series of biochemical methane potential mesophilic assays were run in 120 mL serum bottles on sludge samples pre-treated at 72 °C. When compared with control reaction vessels, no significant differences were noticed in net methane production of pre-treated primary sludge, whereas a relevant increase occurred regarding the pre-treated waste activated sludge. It was also observed that the trend of methane content in biogas during the batch tests can be described by a second order polynomial.


2018 ◽  
Vol 78 (3) ◽  
pp. 644-654 ◽  
Author(s):  
J. Olsson ◽  
S. Schwede ◽  
E. Nehrenheim ◽  
E. Thorin

Abstract A mix of microalgae and bacteria was cultivated on pre-sedimented municipal wastewater in a continuous operated microalgae-activated sludge process. The excess material from the process was co-digested with primary sludge in mesophilic and thermophilic conditions in semi-continuous mode (5 L digesters). Two reference digesters (5 L digesters) fed with waste-activated sludge (WAS) and primary sludge were operated in parallel. The methane yield was slightly reduced (≈10%) when the microalgal-bacterial substrate was used in place of the WAS in thermophilic conditions, but remained approximately similar in mesophilic conditions. The uptake of heavy metals was higher with the microalgal-bacterial substrate in comparison to the WAS, which resulted in higher levels of heavy metals in the digestates. The addition of microalgal-bacterial substrate enhanced the dewaterability in thermophilic conditions. Finally, excess heat can be recovered in both mesophilic and thermophilic conditions.


2014 ◽  
Vol 70 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mathijs Oosterhuis ◽  
Davy Ringoot ◽  
Alexander Hendriks ◽  
Paul Roeleveld

The thermal hydrolysis process (THP) is a sludge treatment technique which affects anaerobic biodegradability, viscosity and dewaterability of waste activated sludge (WAS). In 2011 a THP-pilot plant was operated, connected to laboratory-scale digesters, at the water board Regge en Dinkel and in cooperation with Cambi A.S. and MWH Global. Thermal hydrolysis of WAS resulted in a 62% greater volatile solids (VS) reduction compared to non-hydrolysed sludge. Furthermore, the pilot digesters could be operated at a 2.3 times higher solids loading rate compared to conventional sludge digesters. By application of thermal sludge hydrolysis, the overall efficiency of the sludge treatment process can be improved.


1998 ◽  
Vol 38 (2) ◽  
pp. 49-54 ◽  
Author(s):  
Krishna R. Pagilla ◽  
David Jenkins ◽  
Wendell Kido

Two effects of Nocardia in waste activated sludge (WAS) were investigated: (i) the influence of WAS in the solids treatment recycle streams on Nocardia persistence in the activated sludge, and (ii) the effect of Nocardia in WAS on anaerobic digester foaming. About 4% of the Nocardia present in the mixed liquor was due to seeding from the WAS solids in the dissolved air flotation thickener recycle stream recycle. Nocardia filaments in WAS at levels of between 104 to 106 intersections/g VSS resulted in Nocardia levels of approximately 104 to 105 intersections/g VSS in anaerobic digesters that treated both WAS and primary sludge. The effect of disinfecting these Nocardia filaments in the WAS with Cl2 was investigated at Cl2 dose ranges of 20-60 mg Cl2/l WAS and 100-200 mg Cl2/l WAS on a lab scale using batch foaming tests to assess success. Chlorination with 20 - 60 mg Cl2/l WAS approximately doubled both sludge foaming potential and foam stability. At Cl2 doses of 100-200 mg Cl2/l WAS, foaming potential was increased almost 10-fold, and foam stability was increased by 2.5 times. These results indicate that chlorination of WAS feed to an anaerobic digester for inactivation of Nocardia should not be practiced.


2020 ◽  
Vol 188 ◽  
pp. 109764 ◽  
Author(s):  
Jiawei Hu ◽  
Zhuo Li ◽  
Ai Zhang ◽  
Shun Mao ◽  
Ian R. Jenkinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document