Glyphosate-remediation potential of selected plant species in artificial wetlands

Author(s):  
Mariana Y. López-Chávez ◽  
T. Alvarez-Legorreta ◽  
Dulce Infante-Mata ◽  
Michael F. Dunn ◽  
Karina Guillén-Navarro
2002 ◽  
Author(s):  
KM Stephens ◽  
RM Dowling

This practical field guide describes and illustrates in colour 90 common and widespread wetland plants found in Queensland, and gives a distribution map for each species. To assist those readers who are keen to learn more, the book includes a series of keys to help identify those species that are not illustrated in the book but which may be encountered in the field. The keys also help to identify closely related species. There is also a glossary of technical terms. Creating artificial wetlands for the treatment of wastewater and rehabilitating wetland areas that have been disturbed by roads, bridges, mining, housing and other infrastructure developments requires the use of a range of plant species. Wetland Plants of Queensland is an invaluable resource for all those involved in the reclamation of wetlands or the treatment of wastewater, including farmers, environmentalists and all those with an interest in wetland revegetation.


2020 ◽  
Vol 12 (21) ◽  
pp. 9202
Author(s):  
Leticia Y. Kochi ◽  
Patricia L. Freitas ◽  
Leila T. Maranho ◽  
Philippe Juneau ◽  
Marcelo P. Gomes

There is growing concern among health institutions worldwide to supply clean water to their populations, especially to more vulnerable communities. Although sewage treatment systems can remove most contaminants, they are not efficient at removing certain substances that can be detected in significant quantities even after standard treatments. Considering the necessity of perfecting techniques that can remove waterborne contaminants, constructed wetland systems have emerged as an effective bioremediation solution for degrading and removing contaminants. In spite of their environmentally friendly appearance and efficiency in treating residual waters, one of the limiting factors to structure efficient artificial wetlands is the choice of plant species that can both tolerate and remove contaminants. For sometimes, the chosen plants composing a system were not shown to increase wetland performance and became a problem since the biomass produced must have appropriated destination. We provide here an overview of the use and role of aquatic macrophytes in constructed wetland systems. The ability of plants to remove metals, pharmaceutical products, pesticides, cyanotoxins and nanoparticles in constructed wetlands were compared with the removal efficiency of non-planted systems, aiming to evaluate the capacity of plants to increase the removal efficiency of the systems. Moreover, this review also focuses on the management and destination of the biomass produced through natural processes of water filtration. The use of macrophytes in constructed wetlands represents a promising technology, mainly due to their efficiency of removal and the cost advantages of their implantation. However, the choice of plant species composing constructed wetlands should not be only based on the plant removal capacity since the introduction of invasive species can become an ecological problem.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
N Moodley ◽  
V Maharaj
Keyword(s):  

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
J Táborský ◽  
M Kunt ◽  
P Kloucek ◽  
L Kokoska

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
V Roumy ◽  
AL Gutierrez-Choquevilca ◽  
JP Lopez Mesia ◽  
L Ruiz ◽  
J Ruiz ◽  
...  

2017 ◽  
Author(s):  
P Polychronopoulos ◽  
FA Lyssaios ◽  
R Michalea ◽  
N Aligiannis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document