scholarly journals Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices

Author(s):  
Agnieszka Krzyszczak ◽  
Bożena Czech
2018 ◽  
Vol 23 (2) ◽  
pp. 171-189
Author(s):  
Ainhoa Rubio-Clemente ◽  
Edwin L Chica ◽  
Gustavo A Peñuela

Due to the health risks for both humans and living beings caused by polycyclic aromatic hydrocarbons (PAHs), the monitoring of these compounds in environmental matrices is mandatory. This work proposes an analytical method for analyzing anthracene (AN) and benzo[a]pyrene (BaP), two of the most representative PAHs, at ultra-trace concentrations in water, employing direct injection of large volumes of samples coupled with reversed-phase high-performance liquid chromatography. For this purpose, principal component analysis was used to examine the behavior of AN and BaP within the chromatographic system. Results showed that AN and BaP chromatographic behavior can be described by three models representing their identification, the quantification of AN and that of BaP, respectively. The factors affecting the obtained models, such as the injection volume, column temperature, flow rate, strength of the mobile phase, and the excitation and emission wavelengths, were examined and optimized by means of design of experiments. Finally, the analytical method was validated, obtaining promising limits of detection and quantification. The developed analytical method was demonstrated to be useful for a sensitive analysis of the target analytes in relatively clean natural water matrices.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2182 ◽  
Author(s):  
Natalia Manousi ◽  
George A. Zachariadis

Polycyclic aromatic hydrocarbons (PAHs) comprise a group of chemical compounds consisting of two or more fused benzene rings. PAHs exhibit hydrophobicity and low water solubility, while some of their members are toxic substances resistant to degradation. Due to their low levels in environmental matrices, a preconcentration step is usually required for their determination. Nowadays, there is a wide variety of sample preparation techniques, including micro-extraction techniques (e.g., solid-phase microextraction and liquid phase microextraction) and miniaturized extraction techniques (e.g., dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fabric phase sorptive extraction etc.). Compared to the conventional sample preparation techniques, these novel techniques show some benefits, including reduced organic solvent consumption, while they are time and cost efficient. A plethora of adsorbents, such as metal-organic frameworks, carbon-based materials and molecularly imprinted polymers, have been successfully coupled with a wide variety of extraction techniques. This review focuses on the recent advances in the extraction techniques of PAHs from environmental matrices, utilizing novel sample preparation approaches and adsorbents.


Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 100
Author(s):  
Claudia Campanale ◽  
Georg Dierkes ◽  
Carmine Massarelli ◽  
Giuseppe Bagnuolo ◽  
Vito Felice Uricchio

Microplastics (MPs) have recently been discovered as considerable pollutants of all environmental matrices. They can contain a blend of chemicals, some of them added during the manufacture of plastic to improve their quality (additives) and others adsorbed from the surrounding environment. In light of this, a detailed study about the identification and quantification of target organic pollutants and qualitative screening of non-target compounds present on MPs was carried out in different types of samples: environmental MPs, collected from an Italian river, and pre-production MPs, taken from the plastic industry. Polychlorobiphenyls (PCBs), organochlorine pesticides (OCPs), and polycyclic aromatic hydrocarbons (PAHs) were chosen as target compounds to be quantified by Gas Chromatography-Mass Spectrometry (GC–MS), while the non-target screening was carried out by High Resolution Gas Chromatography-Mass Spectrometry (HRGC–MS). The target analysis revealed concentrations of 16 priority Polycyclic Aromatic Hydrocarbons by Environmental Protection Agency (EPA-PAHs) in the range of 29.9–269.1 ng/g; the quantification of 31 PCBs showed values from 0.54 to 15.3 ng/g, identifying CB-138, 153, 180, 52, and 101 primarily; and the detected OCPs (p,p’-DDT and its metabolites) ranged between 14.5 and 63.7 ng/g. The non-target screening tentatively identified 246 compounds (e.g., phthalates, antioxidants, UV-stabilizers), including endocrine disruptors, toxic and reprotoxic substances, as well as chemicals subjected to risk assessment and authorisation. The large assortment of plastic chemicals associated with MPs showed their role as a presumable source of pollutants, some of which might have high bioaccumulation potential, persistence, and toxicity.


2001 ◽  
Vol 19 (1-4) ◽  
pp. 297-313 ◽  
Author(s):  
Stephen A. Wise ◽  
Bruce A. Benner ◽  
Maria J. Lopez de Alda ◽  
Barbara J. Porter ◽  
Dianne L. Poster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document