Effects of elevated sulfate in eutrophic waters on the internal phosphate release under oxic conditions across the sediment-water interface

Author(s):  
Jun Chen ◽  
Honggang Zhang ◽  
Lixuan Liu ◽  
Jing Zhang ◽  
Mick Cooper ◽  
...  
1998 ◽  
Vol 49 (6) ◽  
pp. 463 ◽  
Author(s):  
T. F. McAuliffe ◽  
R. J. Lukatelich ◽  
A. J. McComb ◽  
S. Qiu

Effects of nitrate on phosphate release from sediments of a eutrophic estuary were investigated under laboratory conditions, using reconstituted sediment–water cores. Application of nitrate (5–100 mg L-1 NO3-N) increased redox potential near the sediment–water interface from –200 mV to about 200 mV during 25 days of incubation. The effective concentration of nitrate differed between sediments, reflecting differences in sediment properties, particularly bioavailable carbon. Reduced phosphate after nitrate application is attributed mainly to: (1) increased iron (III) binding near the sediment–water interface; and (2) increased dissolved oxygen in the water column due to lowered oxygen demand, with increased oxidation of ferrous iron and substances binding soluble reactive phosphate. High nitrate concentrations (50 and 100 mg L-1 NO3-N) did not persist through a 155-day incubation, suggesting that without carbon limitation added nitrate will eventually be consumed by microbial activity, and increased phosphate release may occur. Nitrate application directly into the surface sediment increased nitrate consumption, and so was less effective than application to the water column. Frequent resuspension increased dissolved oxygen concentration, so reduced nitrate consumption and lowered concentration of soluble reactive phosphate.


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

2014 ◽  
Author(s):  
Ren Zhongyuan ◽  
Do Leduy ◽  
Saida Mebarek ◽  
Nermin Keloglu ◽  
Saandia Ahamada ◽  
...  

2018 ◽  
Author(s):  
Daniel R. Moberg ◽  
Shelby C. Straight ◽  
Francesco Paesani

<div> <div> <div> <p>The temperature dependence of the vibrational sum-frequency generation (vSFG) spectra of the the air/water interface is investigated using many-body molecular dynamics (MB-MD) simulations performed with the MB-pol potential energy function. The total vSFG spectra calculated for different polarization combinations are then analyzed in terms of molecular auto-correlation and cross-correlation contributions. To provide molecular-level insights into interfacial hydrogen-bonding topologies, which give rise to specific spectroscopic features, the vSFG spectra are further investigated by separating contributions associated with water molecules donating 0, 1, or 2 hydrogen bonds to neighboring water molecules. This analysis suggests that the low frequency shoulder of the free OH peak which appears at ∼3600 cm−1 is primarily due to intermolecular couplings between both singly and doubly hydrogen-bonded molecules. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document