Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation

1998 ◽  
Vol 49 (6) ◽  
pp. 463 ◽  
Author(s):  
T. F. McAuliffe ◽  
R. J. Lukatelich ◽  
A. J. McComb ◽  
S. Qiu

Effects of nitrate on phosphate release from sediments of a eutrophic estuary were investigated under laboratory conditions, using reconstituted sediment–water cores. Application of nitrate (5–100 mg L-1 NO3-N) increased redox potential near the sediment–water interface from –200 mV to about 200 mV during 25 days of incubation. The effective concentration of nitrate differed between sediments, reflecting differences in sediment properties, particularly bioavailable carbon. Reduced phosphate after nitrate application is attributed mainly to: (1) increased iron (III) binding near the sediment–water interface; and (2) increased dissolved oxygen in the water column due to lowered oxygen demand, with increased oxidation of ferrous iron and substances binding soluble reactive phosphate. High nitrate concentrations (50 and 100 mg L-1 NO3-N) did not persist through a 155-day incubation, suggesting that without carbon limitation added nitrate will eventually be consumed by microbial activity, and increased phosphate release may occur. Nitrate application directly into the surface sediment increased nitrate consumption, and so was less effective than application to the water column. Frequent resuspension increased dissolved oxygen concentration, so reduced nitrate consumption and lowered concentration of soluble reactive phosphate.


Author(s):  
Johnathan Daniel Maxey ◽  
Neil David Hartstein ◽  
Dorathy Penjinus ◽  
Alan Kerroux

Stratified estuaries are home to expanding aquaculture activities whose ecological footprints can be observed through trends in microbial community respiration in the water column. Bottle incubations are widely used to measure water column community respiration in marine and freshwater ecosystems by measuring the flux of dissolved oxygen occurring in the bottle over a period of time. When in situ dissolved oxygen (DO) concentrations are markedly different than DO concentration of the incubation medium the potential for diffusion of oxygen across the bottle opening is great and may be especially pronounced in strongly stratified systems with relatively low rates of pelagic oxygen consumption. We incubated 60 Biochemical Oxygen Demand (BOD) bottles filled with sterilized water with DO concentrations ranging from 2.51 mg O2 L-1 to 10.03 mg O2 L-1 for 24 hours in a temperature controlled water bath. There was a significant relationship when DO flux was set as a function of initial DO (DO Flux = -0.0017x + 0.0085, r2 = 0.72, p < 2.2 e-16). DO fluxes ranged from -0.012 mg O2 L-1 hour-1 to 0.005 mg O2 L-1 hour-1 for bottles incubated with initial DO ranging from 10.03 mg O2 L-1 to 3.31 mg O2 L-1, respectively. These results suggest that diffusion across the ground glass seal of BOD bottles is possible and that extra precaution through parallel diffusion controls should be considered when measuring pelagic respiration using BOD bottle incubations in systems with relatively low or relatively high in situ DO concentrations.



2020 ◽  
Author(s):  
Tamar Guy-Haim ◽  
Maxim Rubin-Blum ◽  
Eyal Rahav ◽  
Natalia Belkin ◽  
Jacob Silverman ◽  
...  

Abstract. Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea – one of the most oligotrophic marine regions in the world. Since the 1970s, this region is experiencing the proliferation of a notorious invasive scyphozoan jellyfish, Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics at the sediment-water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions favored heterotrophic microbial activity, bacterial biomass accumulation, and triggered a shift towards heterotrophic bio-degrading bacterial communities, whereas autotrophic pico-phytoplankton abundance was moderately affected or reduced. This shift may further decrease primary production in the water column of the Eastern Mediterranean Sea. Deoxygenation, acidification, nutrient enrichment and microbial community shifts at the sediment-water interface may have a detrimental impact on macrobenthic communities. Based on these findings we suggest that jelly-falls and their decay may facilitate an additional decline in ecosystem functions and services.



1980 ◽  
Vol 37 (3) ◽  
pp. 506-512 ◽  
Author(s):  
Y. K. Chan ◽  
N. E. R. Campbell

In situ denitrification in Lake 227 was assayed by using 15N-labeled NO3− during summer stratification periods in 1973, 1974, and 1975. Dissolved oxygen and NO3− concentrations were the main factors controlling denitrification in the water column and in sediments. The epilimnetic sediment–water interface was a more significant site of natural denitrification when compared to the oxygen-limiting (dissolved oxygen less than 0.2 mg/L) thermocline and the anoxic hypolimnion. Epilimnetic sediment denitrification rates averaged about 15 mg N∙m−2∙d−1. Nearly all of the NO3− that mixed into the surficial sediments was denitrified. Alone, epilimnetic denitrification removed 1.4% of the NO3− added annually. Below the euphotic zone, sediments would provide an efficient sink for NO3−-N without simultaneous initiation of eutrophication.Key words: denitrification, nitrogen sink, nitrate in lakes, experimental lakes, summer stratification



2020 ◽  
Vol 17 (22) ◽  
pp. 5489-5511
Author(s):  
Tamar Guy-Haim ◽  
Maxim Rubin-Blum ◽  
Eyal Rahav ◽  
Natalia Belkin ◽  
Jacob Silverman ◽  
...  

Abstract. Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea – one of the most oligotrophic marine regions in the world. Since the 1970s, this region has been experiencing the proliferation of a notorious invasive scyphozoan jellyfish, Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics at the sediment–water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions favored heterotrophic microbial activity and bacterial biomass accumulation, and triggered a shift towards heterotrophic biodegrading bacterial communities, whereas autotrophic picophytoplankton abundance was moderately affected or reduced. This shift may further decrease primary production in the water column of the Eastern Mediterranean Sea. Deoxygenation, acidification, nutrient enrichment, and microbial community shifts at the sediment–water interface may have a detrimental impact on macrobenthic communities. Based on these findings, we suggest that jelly-falls and their decay may facilitate an additional decline in ecosystem functions and services.



1979 ◽  
Vol 14 (1) ◽  
pp. 71-88
Author(s):  
S.E. Penttinen ◽  
P.H. Bouthillier ◽  
S.E. Hrudey

Abstract Studies on the chronic low dissolved oxygen problems encountered under winter ice in the Red Deer River have generally been unable to account for dissolved oxygen depletion in terms of known manmade inputs. An experimental program was developed to assess the possible nature and approximate bounds of oxygen demand due to natural organic runoff carried to the Red Deer River by a small tributary stream, the Blindman River. The study employed an electrolytic respirometer on stream water samples subjected to prior concentration by vacuum evaporation. Evaluation of carbon and nitrogen budgets in conjunction with the measured oxygen demand indicate that biochemical oxygen demand is originating with natural organic runoff in tributaries of the Red Deer River. The results provide a basis for estimation of the possible contribution to the observed oxygen demand in the Red Deer River originating from natural organic runoff.



1998 ◽  
Vol 38 (10) ◽  
pp. 23-30
Author(s):  
Sarah Jubb ◽  
Philip Hulme ◽  
Ian Guymer ◽  
John Martin

This paper describes a preliminary investigation that identified factors important in the prediction of river water quality, especially regarding dissolved oxygen (DO) concentration. Intermittent discharges from combined sewer overflows (CSOs) within the sewerage, and overflows at water reclamation works (WRW) cause dynamic conditions with respect to both river hydraulics and water quality. The impact of such discharges has been investigated under both wet and dry weather flow conditions. Data collected from the River Maun, UK, has shown that an immediate, transient oxygen demand exists downstream of an outfall during storm conditions. The presence of a delayed oxygen demand has also been identified. With regard to modelling, initial investigations used a simplified channel and the Streeter-Phelps (1925) dissolved oxygen sag curve equation. Later, a model taking into account hydrodynamic, transport and dispersion processes was used. This suggested that processes other than water phase degradation of organic matter significantly affect the dissolved oxygen concentration downstream of the location of an intermittent discharge. It is proposed that the dynamic rate of reaeration and the sediment oxygen demand should be the focus of further investigation.



Sign in / Sign up

Export Citation Format

Share Document