Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions

Author(s):  
Tan Chen ◽  
Chunqiao Song ◽  
Pengfei Zhan ◽  
Jiepeng Yao ◽  
Yunliang Li ◽  
...  
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Li ◽  
Jiawei Wang ◽  
Liangyan Yang ◽  
Huping Ye

AbstractSri Lanka is an important hub connecting Asia-Africa-Europe maritime routes. It receives abundant but uneven spatiotemporal distribution of rainfall and has evident seasonal water shortages. Monitoring water area changes in inland lakes and reservoirs plays an important role in guiding the development and utilisation of water resources. In this study, a rapid surface water extraction model based on the Google Earth Engine remote sensing cloud computing platform was constructed. By evaluating the optimal spectral water index method, the spatiotemporal variations of reservoirs and inland lakes in Sri Lanka were analysed. The results showed that Automated Water Extraction Index (AWEIsh) could accurately identify the water boundary with an overall accuracy of 99.14%, which was suitable for surface water extraction in Sri Lanka. The area of the Maduru Oya Reservoir showed an overall increasing trend based on small fluctuations from 1988 to 2018, and the monthly area of the reservoir fluctuated significantly in 2017. Thus, water resource management in the dry zone should focus more on seasonal regulation and control. From 1995 to 2015, the number and area of lakes and reservoirs in Sri Lanka increased to different degrees, mainly concentrated in arid provinces including Northern, North Central, and Western Provinces. Overall, the amount of surface water resources have increased.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Vladimir Fonseca Nascimento ◽  
Alfredo Ribeiro Neto

ABSTRACT This paper reports the application of information acquired by aerial survey to characterize water supply reservoirs in the Pajeú River Basin (Pernambuco State/Brazil). The survey was carried out with digital cameras of high spatial resolution and laser relief profiling (LiDAR technology). Two areas were selected to apply the remote sensing products. Small reservoirs in the Quixaba Creek Basin were identified based on their topographic characteristics. Given that the small reservoirs are “depressions” in the terrain, they can be “filled”, resulting in a new Digital Terrain Model (DTM). The difference between the filled DTM and the original DTM makes it possible to identify the reservoirs. A summary of the results is: 61 reservoirs were correctly detected; 18 reservoirs were not detected; 13 reservoirs were detected erroneously. In another application, the storage capacity of the reservoirs belonging to the hydrosystems of Pajeú River Basin was estimated. The storage in these reservoirs and maximum surface area were estimated using DTM and geoprocessing tools. From the total of 31 reservoirs evaluated, eight were completely empty at the time of the LiDAR data collection. The official registers reported 83.83 million m3 for the storage capacity of these eight reservoirs, whereas our applications estimated the value at 70.23 million m3. This difference is explained by the loss of volume in the reservoirs due to the process of sediment transport.


2020 ◽  
Author(s):  
Dr. Jean-Pierre Dedieu ◽  
Johann Housset ◽  
Arthur Bayle ◽  
Esther Lévesque ◽  
José Gérin-Lajoie

<p>Arctic greening trends are well documented at various scales (Fraser et al., 2011; Tremblay et al., 2012; Bjorkman et al., 2018). In this context, Remote Sensing offers a unique tool for estimating the high latitude vegetation evolution in the relatively long-term, i.e. the Landsat archive since the 80’s. Spectral indices derived from visible and infra-red wavelengths provide relations that can be used to quantify vegetation dynamics, we will combine the well-used Normalized Difference Vegetation Index (NDVI) and the recent Normalized Anthocyanins Reflectance Index (Bayle et al., 2019), using red-edge spectral band (690 to 710 µm) from Sentinel-2, to better quantify vegetation change over 30 years.</p><p>The application area is located in Nunavik, northern Québec (Canada), and concerns the George River catchment (565 km length, 41 700 km²). This large river basin covers vegetation from boreal forest (South) to arctic tundra (North). Local study sites stem from the Kangiqsualujjuaq village (Ungava Bay) to 300 km south, along the main river and its tributaries.</p><p>NDVI: surface reflectance Landsat bands were gathered for three years 1985, 2000 and 2015 (respectively Landsat missions 5, 7 and 8). For each period of interest, the best August cloud-free scenes were chosen and merged to create a cloud free mosaic covering the study area. NDVI bands were calculated and compared after cloud and water masking. NDVI trends were compared between the main vegetation types following the newly released “Ecological mapping of the vegetation of northern Quebec” (MRNFP, 2018). Centroid of polygons within the main vegetation types of the map were used to classify the NDVI results and assess changes per type. Results of NDVI time evolution revealed a clear greening trend at the river basin scale. Although greening was observed across the whole latitudinal gradient, the relative NDVI increase was stronger on the northern half of the study area, mostly covered with tundra and subarctic vegetation. Both shrublands and sparsely vegetated zones dominated by rocks had the greatest relative NDVI increase. This is likely caused by improved growth of established prostrate vegetation over the past 30 years in response to increasing temperatures trend.</p><p>NARI: greening trends in the Eastern Canadian Arctic have been partly attributed to increases in shrub cover (Myers-smith et al., 2011) and specifically to Betula glandulosa (e.g. Tremblay et al., 2012). Such land cover changes alter species competition (Shevtosa et al., 1997) and soil thermal regime (Domine et al., 2015; Paradis et al., 2016). Transformations in biotic and abiotic conditions reduce the fruit productivity of low stature shrubs of the Ericaceae family (Lussier 2017), which in turn is expected to impact animal (Prescott and Richard 2013) and human populations (Lévesque et al., 2013; Boulanger-Lapointe et al., 2019). An innovative method has been developed in the French Alps to detect the late-fall reddening of shrub leaves and map shrublands (Bayle et al., 2019). Quantifying NARI dynamics related to NDVI dynamics could allow to gain a better understanding of species composition change related to current landscape transformation.</p>


Author(s):  
C. Liu ◽  
J. Liu ◽  
Y. Hu ◽  
C. Zheng

Abstract. Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.


2012 ◽  
Vol 5 (4) ◽  
pp. 941-962 ◽  
Author(s):  
B. Ringeval ◽  
B. Decharme ◽  
S. L. Piao ◽  
P. Ciais ◽  
F. Papa ◽  
...  

Abstract. The quality of the global hydrological simulations performed by land surface models (LSMs) strongly depends on processes that occur at unresolved spatial scales. Approaches such as TOPMODEL have been developed, which allow soil moisture redistribution within each grid-cell, based upon sub-grid scale topography. Moreover, the coupling between TOPMODEL and a LSM appears as a potential way to simulate wetland extent dynamic and its sensitivity to climate, a recently identified research problem for biogeochemical modelling, including methane emissions. Global evaluation of the coupling between TOPMODEL and an LSM is difficult, and prior attempts have been indirect, based on the evaluation of the simulated river flow. This study presents a new way to evaluate this coupling, within the ORCHIDEE LSM, using remote sensing data of inundated areas. Because of differences in nature between the satellite derived information – inundation extent – and the variable diagnosed by TOPMODEL/ORCHIDEE – area at maximum soil water content, the evaluation focuses on the spatial distribution of these two quantities as well as on their temporal variation. Despite some difficulties in exactly matching observed localized inundated events, we obtain a rather good agreement in the distribution of these two quantities at a global scale. Floodplains are not accounted for in the model, and this is a major limitation. The difficulty of reproducing the year-to-year variability of the observed inundated area (for instance, the decreasing trend by the end of 90s) is also underlined. Classical indirect evaluation based on comparison between simulated and observed river flow is also performed and underlines difficulties to simulate river flow after coupling with TOPMODEL. The relationship between inundation and river flow at the basin scale in the model is analyzed, using both methods (evaluation against remote sensing data and river flow). Finally, we discuss the potential of the TOPMODEL/LSM coupling to simulate wetland areas. A major limitation of the coupling for this purpose is linked to its ability to simulate a global wetland coverage consistent with the commonly used datasets. However, it seems to be a good opportunity to account for the wetland areas sensitivity to the climate and thus to simulate its temporal variability.


Sign in / Sign up

Export Citation Format

Share Document