Nitrous acid (HONO) emission factors for diesel vehicles determined using a chassis dynamometer

Author(s):  
Yoshihiro Nakashima ◽  
Yoshinori Kondo
2018 ◽  
Author(s):  
Aurélie Charron ◽  
Lucie Polo-Rehn ◽  
Jean-Luc Besombes ◽  
Benjamin Golly ◽  
Christine Buisson ◽  
...  

Abstract. In order to identify and quantify key-species associated with non-exhaust emissions and exhaust vehicular emissions a large comprehensive dataset of particulate species has been obtained thanks to simultaneous near-road and urban background measurements coupled with detailed traffic counts and chassis dynamometer measurements of exhaust emissions of a few in-use vehicles well-represented in the French fleet. Elemental Carbon, brake-wear metals (Cu, Fe, Sb, Sn, Mn), n-alkanes (C19–C26), light molecular weight PAHs (Pyrene, Fluoranthene, Anthracene) and two hopanes (17α21βNorhopane and 17α21βhopane) are strongly associated with the road traffic. Traffic-fleet emission factors have been determined for all of them and are consistent with most recent published equivalent data. When possible, light-duty and heavy-duty duty traffic emission factors are also determined. Most of the first ones are in good agreement with emissions from chassis dynamometer measurements in absence of significant non-combustion emissions. This study has shown that ratios involving copper (mainly Cu/Fe and Cu/Sn) could be used to trace brake-wear emissions as they seem to be roughly constant in Europe and as longer as Cu-free brake are not largely spread. In France where the traffic was largely dominated by diesel vehicles in 2011 (70 %), the OC/EC ratio typical of traffic emissions was around 0.44. On the contrary, the use of quantitative data for source apportionment studies is not straightforward for the identified organic molecular markers; while, their presence seems to well-characterized fresh traffic emissions.


Author(s):  
Min-Kyeong Kim ◽  
Duckshin Park ◽  
Minjeong Kim ◽  
Jaeseok Heo ◽  
Sechan Park ◽  
...  

Use of diesel locomotives in transport is gradually decreasing due to electrification and the introduction of high-speed electric rail. However, in Korea, up to 30% of the transportation of passengers and cargo still uses diesel locomotives and diesel vehicles. Many studies have shown that exhaust gas from diesel locomotives poses a threat to human health. This study examined the characteristics of particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons in diesel locomotive engine exhaust. Emission concentrations were evaluated and compared with the existing regulations. In the case of PM and NOx, emission concentrations increased as engine output increased. High concentrations of CO were detected at engine start and acceleration, while hydrocarbons showed weakly increased concentrations regardless of engine power. Based on fuel consumption and engine power, the emission patterns of PM and gaseous substances observed in this study were slightly higher than the U.S. Environmental Protection Agency Tier standard and the Korean emission standard. Continuous monitoring and management of emissions from diesel locomotives are required to comply with emission standards. The findings of this study revealed that emission factors varied based on fuel consumption, engine power, and actual driving patterns. For the first time, a portable emission measurement system (PEMS), normally used to measure exhaust gas from diesel vehicles, was used to measure exhaust gas from diesel locomotives, and the data acquired were compared with previous results. This study is meaningful as the first example of measuring the exhaust gas concentration by connecting a PEMS to a diesel locomotive, and in the future, a study to measure driving characteristics and exhaust gas using a PEMS should be conducted.


2020 ◽  
Vol 10 (17) ◽  
pp. 5856
Author(s):  
Gyutae Park ◽  
Kyunghoon Kim ◽  
Taehyun Park ◽  
Seokwon Kang ◽  
Jihee Ban ◽  
...  

With global anthropogenic black carbon (BC) emissions increasing, automobiles are significantly contributing as the major source of emissions. However, the appropriate regulations of BC emissions from vehicles are not in place. This study examined BC emissions following fuel types (gasoline, liquefied petroleum gas (LPG), and diesel) and engine combustion (gasoline direct injection (GDI) and multi-port injection (MPI) for gasoline vehicles) with emission regulations. To this end, chassis dynamometer and aethalometer (AE33) were used. Driving modes created by the National Institute of Environmental Research (NIER) and emission certification modes (CVS-75 and NEDC) for vehicles in Korea were used to determine BC emissions for various vehicle speeds. In addition, the contributions of biomass and coal combustion to the data of AE33 were analyzed to determine the possibility of tracking the BC sources. MPI, LPG, and EURO 6 with diesel particulate filter (DPF) vehicles emitted the lowest BC emissions in NIER modes. Among gasoline vehicles, MPI vehicles showed the lower BC content in PM emissions. Also, older vehicles in MPI vehicles emitted the high PM and BC emissions. The BC emissions of EURO 3 vehicles without DPF were the highest as the results of previous studies, and it was found that as emissions regulations were tightened, the level of BC results of diesel vehicles became similar with MPI vehicles. The average absorption Ångström exponent (AAE) from difference emissions sources were biomass combustion (oak wood) > coal combustion (the power plant stack) > automobile emissions (gasoline, LPG, diesel).


2017 ◽  
Vol 169 ◽  
pp. 193-203 ◽  
Author(s):  
Cheng Huang ◽  
Shikang Tao ◽  
Shengrong Lou ◽  
Qingyao Hu ◽  
Hongli Wang ◽  
...  

2017 ◽  
Vol 67 (4) ◽  
pp. 412-420 ◽  
Author(s):  
Ha T. Trinh ◽  
Katsuma Imanishi ◽  
Tazuko Morikawa ◽  
Hiroyuki Hagino ◽  
Norimichi Takenaka

2016 ◽  
Vol 16 (17) ◽  
pp. 11267-11281 ◽  
Author(s):  
Nazar Kholod ◽  
Meredydd Evans ◽  
Teresa Kuklinski

Abstract. Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.


2021 ◽  
Vol 11 (3) ◽  
pp. 199-206
Author(s):  
Pham Huu Tuyen ◽  
Pham Minh Tuan ◽  
Kazuhiro Yamamoto ◽  
Preechar Karin

Motorcycle is the most popular transportation means in Vietnam due to its low cost and flexibility. However, motorcycles emit substantial quantities of hydrocarbons, carbon monoxide, nitrogen oxides and some amount of particulate matter. Emission factors for in-use motorcycles in Vietnam were studied and established quite a long time ago. The objective of this study is to update the emission factors, not only gaseous emissions but also particle number, for in-use motorcycles in Vietnam. Ten carbureted and electronic fuel injected motorcycles representative for in-use motorcycles were selected for investigation. Each motorcycle was fueled by conventional gasoline, E5 and E10 in turn, and was tested on a chassis dynamometer according to ECE R40 driving cycle. The gaseous emissions were sampled and determined by standard methods, while the particle number in exhaust gas was sampled by using the sampling system developed by Laboratory of Internal Combustion Engine, Hanoi University of Science and Technology, Vietnam. The updated emission factors were then provided for carbureted motorcycles, EFI motorcycles and average motorcycle fleet in case of gasoline, E5 and E10 fueling.


1999 ◽  
Vol 33 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Janet Yanowitz ◽  
Michael S. Graboski ◽  
Lisa B. A. Ryan ◽  
Teresa L. Alleman ◽  
Robert L. McCormick

Sign in / Sign up

Export Citation Format

Share Document