Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area — Impacts of ship emissions on urban air quality

Author(s):  
Liyuan Zhou ◽  
Mei Li ◽  
Chunlei Cheng ◽  
Zhen Zhou ◽  
Huiqing Nian ◽  
...  
1981 ◽  
Author(s):  
Birgitta Berglund ◽  
Ulf Berglund ◽  
Thomas Lindvall ◽  
Helene Nicander-Bredberg

2020 ◽  
Author(s):  
Daniel Zollitsch ◽  
Jia Chen ◽  
Florian Dietrich ◽  
Benno Voggenreiter ◽  
Luca Setili ◽  
...  

<p>As the number of official monitoring stations for measuring urban air pollutants such as nitrogen oxides (NOx), particulate matter (PM) or ozone (O<sub>3</sub>) in most cities is quite small, it is difficult to determine the real human exposure to those pollutants. Therefore, several groups have established spatially higher resolved monitoring networks using low-cost sensors to create a finer concentration map [1-3].</p><p>We are currently establishing a low-cost, but high-accuracy network in Munich to measure the concentrations of NOx, PM, O<sub>3</sub>, CO and additional environmental parameters. For that, we developed a compact stand-alone sensor systems that requires low power, automatically measures the respective parameters every minute and sends the data to our server. There the raw data is transferred into concentration values by applying the respective sensitivity function for each sensor. These functions are determined by calibration measurements prior to the distribution of the sensors.</p><p>In contrast to the other existing networks, we will apply a recurring calibration method using a mobile high precision calibration unit (reference sensor) and machine learning algorithms. The results will be used to update the sensitivity function of each single sensor twice a week.  With the help of this approach, we will be able to create a calibrated real-time concentration map of air pollutants in Munich.</p><p>[1] Bigi et al.: Performance of NO, NO<sub>2</sub> low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, 2018</p><p>[2] Popoola et al., “Use of networks of low cost air quality sensors to quantify air quality in urban settings,” Atmos. Environ., 194, 58–70, 2018</p><p>[3] Schneider et al.: Mapping urban air quality in near real-time using observations from low-cost sensors and model information, Environ. Int., 106, 234–247, 2017</p>


2017 ◽  
Vol 106 ◽  
pp. 234-247 ◽  
Author(s):  
Philipp Schneider ◽  
Nuria Castell ◽  
Matthias Vogt ◽  
Franck R. Dauge ◽  
William A. Lahoz ◽  
...  

2012 ◽  
Vol 201-202 ◽  
pp. 586-589
Author(s):  
Rui Lian Hou

Underlying on the technologies of internet, network database and GIS, this paper presents the total solution of the development of the real-time monitoring and forecasting system model of urban air quality, which fulfils the requirements to low energy consumption and quick response and provides reference for similar project research.The paper systematically describes the system target,background of the development,running environment choice of the software, process of the development etc.Then it analyses function modules of the system.At last it gives the structures and implementation methods of the system’s database and the system security solution.This system not only can generate the state analysis reports and the early warning, but also can visualize the data analysing of the air quality by GIS.


2020 ◽  
Vol 20 (15) ◽  
pp. 9135-9151
Author(s):  
Stina Ausmeel ◽  
Axel Eriksson ◽  
Erik Ahlberg ◽  
Moa K. Sporre ◽  
Mårten Spanne ◽  
...  

Abstract. In coastal areas, there is increased concern about emissions from shipping activities and the associated impact on air quality. We have assessed the ship aerosol properties and the contribution to coastal particulate matter (PM) and nitrogen dioxide (NO2) levels by measuring ship plumes in ambient conditions at a site in southern Sweden, within a Sulfur Emission Control Area. Measurements took place during a summer and a winter campaign, 10 km downwind of a major shipping lane. Individual ships showed large variability in contribution to total particle mass, organics, sulfate, and NO2. The average emission contribution of the shipping lane was 29±13 and 37±20 ng m−3 to PM0.5, 18±8 and 34±19 ng m−3 to PM0.15, and 1.21±0.57 and 1.11±0.61 µg m−3 to NO2, during winter and summer, respectively. Sulfate and organics dominated the particle mass and most plumes contained undetectable amounts of equivalent black carbon (eBC). The average eBC contribution was 3.5±1.7 ng m−3 and the absorption Ångström exponent was close to 1. Simulated ageing of the ship aerosols using an oxidation flow reactor showed that on a few occasions, there was an increase in sulfate and organic mass after photochemical processing of the plumes. However, most plumes did not produce measurable amounts of secondary PM upon simulated ageing.


2015 ◽  
Vol 15 (1) ◽  
pp. 965-1000 ◽  
Author(s):  
M. C. Minguillón ◽  
A. Ripoll ◽  
N. Pérez ◽  
A. S. H. Prévôt ◽  
F. Canonaco ◽  
...  

Abstract. An Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc.) was deployed at Montseny (MSY, 720 m a.s.l.) regional background site in the Western Mediterranean from June 2012 to July 2013 to measure real-time inorganic (nitrate, sulphate, ammonium and chloride) and organic submicron aerosol concentrations. Co-located measurements were also carried out including real-time submicron particulate matter (PM1) and black carbon (BC) concentrations, and off-line PM1 chemical analysis. This is one of the few studies that compare ACSM data with off-line PM1 measurements, avoiding the tail of the coarse mode included in the PM2.5 fraction. The ACSM + BC concentrations agreed with the PM1 measurements, and strong correlation was found between the concentrations of ACSM species and the off-line measurements, although some discrepancies remain unexplained. Results point to a current underestimation of the relative ionization efficiency (RIE) established for organic aerosol (OA), which should be revised in the future. The OA was the major component of submicron aerosol (53% of PM1), with a higher contribution in summer (58% of PM1) than in winter (45% of PM1). Source apportionment of OA was carried out by applying Positive Matrix Factorization (PMF) using the Multilinear Engine (ME-2) to the organic mass spectral data matrix. Three sources were identified in summer: hydrocarbon-like OA (HOA), low-volatile oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The secondary OA (SOA, 4.7 μg m−3, sum of LV-OOA and SV-OOA) accounted for 85% of the total OA and its formation during daytime (mainly SV-OOA) was estimated to be 1.1 μg m−3. In winter, HOA was also identified (12% of OA), a contribution from biomass burning OA was included, and it was not possible to differentiate two different SOA factors but a single OOA factor was resolved. The OOA contribution represented the 60% of the total OA, with a degree of oxidation higher than both OOA summer factors. An intense wildfire episode was studied obtaining a region-specific BBOA profile.


2015 ◽  
Vol 118 ◽  
pp. 107-117 ◽  
Author(s):  
Darius Ciuzas ◽  
Tadas Prasauskas ◽  
Edvinas Krugly ◽  
Ruta Sidaraviciute ◽  
Andrius Jurelionis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document