Line tension induced character angle dependence of dislocation mobility in FCC alloys

2022 ◽  
Vol 208 ◽  
pp. 114340
Author(s):  
Ryan B. Sills ◽  
Michael E. Foster ◽  
Xiaowang Zhou
Author(s):  
T. Oikawa ◽  
M. Inoue ◽  
T. Honda ◽  
Y. Kokubo

EELS allows us to make analysis of light elements such as hydrogen to heavy elements of microareas on the specimen. In energy loss spectra, however, elemental signals ride on a high background; therefore, the signal/background (S/B) ratio is very low in EELS. A technique which collects the center beam axial-symmetrically in the scattering angle is generally used to obtain high total intensity. However, the technique collects high background intensity together with elemental signals; therefore, the technique does not improve the S/B ratio. This report presents the experimental results of the S/B ratio measured as a function of the scattering angle and shows the possibility of the S/B ratio being improved in the high scattering angle range.Energy loss spectra have been measured using a JEM-200CX TEM with an energy analyzer ASEA3 at 200 kV.Fig.l shows a typical K-shell electron excitation edge riding on background in an energy loss spectrum.


Author(s):  
R. Haswell ◽  
U. Bangert ◽  
P. Charsley

A knowledge of the behaviour of dislocations in semiconducting materials is essential to the understanding of devices which use them . This work is concerned with dislocations in alloys related to the semiconductor GaAs . Previous work on GaAs has shown that microtwinning occurs on one of the <110> rosette arms after indentation in preference to the other . We have shown that the effect of replacing some of the Ga atoms by Al results in microtwinning in both of the rosette arms.In the work to be reported dislocations in specimens of different compositions of Gax Al(1-x) As and Gax In(1-x) As have been studied by using micro indentation on a (001) face at room temperature . A range of electron microscope techniques have been used to investigate the type of dislocations and stacking faults/microtwins in the rosette arms , which are parallel to the [110] and [10] , as a function of composition for both alloys . Under certain conditions microtwinning occurs in both directions . This will be discussed in terms of the dislocation mobility.


1999 ◽  
Vol 96 (9) ◽  
pp. 1335-1339 ◽  
Author(s):  
ALAN E. VAN GIESSEN, DIRK JAN BUKMAN, B.

1991 ◽  
Vol 1 (6) ◽  
pp. 945-956 ◽  
Author(s):  
G. Saada

1985 ◽  
Vol 46 (C10) ◽  
pp. C10-135-C10-138
Author(s):  
LFCP DE LIMA ◽  
P. E.V. DE MIRANDA

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1020
Author(s):  
Xiao-Zhi Tang ◽  
Ya-Fang Guo

The interaction between a lattice dislocation and non-shearable precipitates has been well explained by the Orowan bypass mechanism. The calculated additional shear stress facilitates the evaluation of precipitation hardening in metallic alloys. The lack of information about how a twinning dislocation behaves in the same scenario hinders our understanding of the strengthening against twin-mediated plasticity in magnesium alloys. In the current study, the bowing and bypassing of a twining dislocation impeded by impenetrable obstacles are captured by atomistic simulations. The Orowan stress measurement is realized by revealing the stick-slip dynamics of a twinning dislocation. The measured Orowan stress significantly deviate from what classic theory predicts. This deviation implies that the line tension approximation may generally overestimate the Orowan stress for twinning dislocations.


2021 ◽  
Vol 544 ◽  
pp. 152658
Author(s):  
Pengyuan Xiu ◽  
Hongbin Bei ◽  
Yanwen Zhang ◽  
Lumin Wang ◽  
Kevin G. Field
Keyword(s):  

1990 ◽  
Vol 41 (14) ◽  
pp. 9717-9720 ◽  
Author(s):  
R. A. Johnson

Sign in / Sign up

Export Citation Format

Share Document