Computer studies on bombarding-angle dependence of threshold energy of sputtering yields

1984 ◽  
Vol 128-129 ◽  
pp. 559-563 ◽  
Author(s):  
Y. Yamamura ◽  
Y. Mizuno
1991 ◽  
Vol 223 ◽  
Author(s):  
J. Muri ◽  
Ch. Steinbrüchel

ABSTRACTSputtering yields Y(E)at ion energies E keV are shown to be described by the equation Y(E) = A(En - ) where A, n, and the threshold energy Eth are constants characteristic for a particular projectile/target combination. Examination of a wide variety of systems reveals that n = 0.5 provides an excellent universal representation of a large body of data, including physical sputtering of metals by noble gas ions, selfsputtering of metals, as well as physical and chemical sputtering of Si and SiO2. The above value for n is consistent with a 1/r4 power law atom-atom interaction potential within Sigmund's theory of sputtering. Another conclusion is that the effect of Eth on Y(E) must be taken into account at ion energies as high as 1 keV, not just near the sputtering threshold.


1993 ◽  
Vol 71 (3-4) ◽  
pp. 155-158 ◽  
Author(s):  
A. K. Handoo ◽  
P. K. Ray

Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield.57Co and 51Cr were used as tracers. The yield–energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.


2015 ◽  
Vol 119 (7) ◽  
pp. 3297-3303 ◽  
Author(s):  
M. P. Seah ◽  
S. J. Spencer ◽  
A. G. Shard

1987 ◽  
Vol 103 (1-4) ◽  
pp. 25-43 ◽  
Author(s):  
Y. Yamamura ◽  
C. Mössner ◽  
H. Oechsner

Author(s):  
T. Oikawa ◽  
M. Inoue ◽  
T. Honda ◽  
Y. Kokubo

EELS allows us to make analysis of light elements such as hydrogen to heavy elements of microareas on the specimen. In energy loss spectra, however, elemental signals ride on a high background; therefore, the signal/background (S/B) ratio is very low in EELS. A technique which collects the center beam axial-symmetrically in the scattering angle is generally used to obtain high total intensity. However, the technique collects high background intensity together with elemental signals; therefore, the technique does not improve the S/B ratio. This report presents the experimental results of the S/B ratio measured as a function of the scattering angle and shows the possibility of the S/B ratio being improved in the high scattering angle range.Energy loss spectra have been measured using a JEM-200CX TEM with an energy analyzer ASEA3 at 200 kV.Fig.l shows a typical K-shell electron excitation edge riding on background in an energy loss spectrum.


Author(s):  
K. Izui ◽  
S. Furuno ◽  
H. Otsu ◽  
T. Nishida ◽  
H. Maeta

Anisotropy of damage productions in crystals due to high energy electron bombardment are caused from two different origins. One is an anisotropic displacement threshold energy, and the other is an anisotropic distribution of electron flux near the atomic rows in crystals due to the electron channeling effect. By the n-beam dynamical calculations for germanium and molybdenum we have shown that electron flux at the atomic positions are from ∽4 to ∽7 times larger than the mean incident flux for the principal zone axis directions of incident 1 MeV electron beams, and concluded that such a locally increased electron flux results in an enhanced damage production. The present paper reports the experimental evidence for the enhanced damage production due to the locally increased electron flux and also the results of measurements of the displacement threshold energies for the <100>,<110> and <111> directions in molybdenum crystals by using a high voltage electron microscope.


Author(s):  
Wilfried Sigle ◽  
Matthias Hohenstein ◽  
Alfred Seeger

Prolonged electron irradiation of metals at elevated temperatures usually leads to the formation of large interstitial-type dislocation loops. The growth rate of the loops is proportional to the total cross-section for atom displacement,which is implicitly connected with the threshold energy for atom displacement, Ed . Thus, by measuring the growth rate as a function of the electron energy and the orientation of the specimen with respect to the electron beam, the anisotropy of Ed can be determined rather precisely. We have performed such experiments in situ in high-voltage electron microscopes on Ag and Au at 473K as a function of the orientation and on Au as a function of temperature at several fixed orientations.Whereas in Ag minima of Ed are found close to <100>,<110>, and <210> (13-18eV), (Fig.1) atom displacement in Au requires least energy along <100>(15-19eV) (Fig.2). Au is thus the first fcc metal in which the absolute minimum of the threshold energy has been established not to lie in or close to the <110> direction.


Sign in / Sign up

Export Citation Format

Share Document