Sandstone provenance and sediment dispersal in a complex tectonic setting: Taranaki Basin, New Zealand

2018 ◽  
Vol 372 ◽  
pp. 112-139 ◽  
Author(s):  
Karen E. Higgs ◽  
Peter R. King
2012 ◽  
Vol 150 (1) ◽  
pp. 89-109 ◽  
Author(s):  
C. J. ADAMS ◽  
N. MORTIMER ◽  
H. J. CAMPBELL ◽  
W. L. GRIFFIN

AbstractDetrital zircon U–Pb ages are reported for 14 sandstones of mainly Cretaceous age from the Northland Allochthon, Houhora Complex and Waipapa Terrane of northern North Island, New Zealand. Results from the Waipapa Terrane samples, selected from sequences in the Bay of Plenty, Coromandel Peninsula and Great Barrier Island, show that deposition continued into late Early Cretaceous time and, as in the Torlesse Composite Terrane, finally waned at c. 110–114 Ma. Upper Lower Cretaceous and Upper Cretaceous sedimentary successions in the Houhora Complex and Northland Allochthon have dominant sediment sources derived from local, contemporary volcanism, with a minor older contribution from the Murihiku Terrane to the west. As in eastern North Island, upper Upper Cretaceous sandstones lack major Albian magmatic components and their sources are solely in the Murihiku Terrane, and possibly the Western Province. We propose a Cretaceous palaeogeographic model that invokes a recently extinct orogen and a partially submerged continental borderland, dissected by rivers supplying submarine fans.


Author(s):  
Dick Beetham ◽  
Graeme Beattie ◽  
Barry Earl ◽  
Denzil Duncan

Our report describes the observations and assessments of the members of the reconnaissance team which visited Seattle, Tacoma, Olympia and surrounding areas a few days after the magnitude 6.8 Nisqually earthquake struck on 28 February, 2001. The report covers the tectonic setting and geology of the region, the source of the earthquake, its strong ground motions, ground damage - liquefaction and landslides, damage to buildings, bridges, lifelines, emergency management, community response, and lessons for New Zealand.


2019 ◽  
Vol 156 (10) ◽  
pp. 1751-1770 ◽  
Author(s):  
Dominic P. Strogen ◽  
Karen E. Higgs ◽  
Angela G. Griffin ◽  
Hugh E. G. Morgans

AbstractEight latest Eocene to earliest Miocene stratigraphic surfaces have been identified in petroleum well data from the Taranaki Basin, New Zealand. These surfaces define seven regional sedimentary packages, of variable thickness and lithofacies, forming a mixed siliciclastic–carbonate system. The evolving tectonic setting, particularly the initial development of the Australian–Pacific convergent margin, controlled geographic, stratigraphic and facies variability. This tectonic signal overprinted a regional transgressive trend that culminated in latest Oligocene times. The earliest influence of active compressional tectonics is reflected in the preservation of latest Eocene – Early Oligocene deepwater sediments in the northern Taranaki Basin. Thickness patterns for all mid Oligocene units onwards show a shift in sedimentation to the eastern Taranaki Basin, controlled by reverse movement on the Taranaki Fault System. This resulted in the deposition of a thick sedimentary wedge, initially of coarse clastic sediments, later carbonate dominated, in the foredeep close to the fault. In contrast, Oligocene active normal faulting in a small sub-basin in the south may represent the most northerly evidence for rifting in southern Zealandia, related to Emerald Basin formation. The Early Miocene period saw a return to clastic-dominated deposition, the onset of regional regression and the southward propagation of compressional tectonics.


2013 ◽  
Vol 32 (1) ◽  
pp. 55-85 ◽  
Author(s):  
Wolf Mayer

William Noel Benson was one of the most renowned geologists in Australia and New Zealand during the first half of the twentieth century. He studied geology at the Universities of Sydney and Cambridge and occupied the Chair of Geology at the University of Otago with great distinction for thirty-three years. His research work extended across the greater part of the geological spectrum and gained him world-wide recognition and a reputation as a scholar in the classical mode. His name is today most closely associated with his pioneering work on the composition, origin and tectonic setting of the mafic and ultramafic rocks of the Great Serpentine Belt of New South Wales, and with his unfinished study of the Tertiary volcanic rocks of the Dunedin district, in New Zealand. He also made important contributions in such diverse fields as palaeontology, geomorphology, engineering geology and medical geology. Benson was a highly respected teacher and a compassionate man with deep religious convictions.


Sign in / Sign up

Export Citation Format

Share Document